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I'm doing well, thanks for asking. 
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Fig. 1. An overview of our chatbot running on a large language model through zero-shot response generation,
with only a prefix A○ consisting of persona modifier and information format and the ongoing dialogue history
B○. The example conversation is carried on about work a○. GPT-3 was used for an underlying large language
model C○.

Large language models (LLMs) provide a new way to build chatbots by accepting natural language prompts.
Yet, it is unclear how to design prompts to power chatbots to carry on naturalistic conversations while pursuing
a given goal such as collecting self-report data from users. We explore what design factors of prompts can
help steer chatbots to talk naturally and collect data reliably. To this aim, we formulated four prompt designs
with different structures and personas. Through an online study (𝑁 = 48) where participants conversed with
chatbots driven by different designs of prompts, we assessed how prompt designs and conversation topics
affected the conversation flows and users’ perceptions of chatbots. Our chatbots covered 79% of the desired
information slots during conversations, and the designs of prompts and topics significantly influenced the
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conversation flows and the data collection performance. We discuss the opportunities and challenges of
building chatbots with LLMs.

CCS Concepts: •Human-centered computing→ Empirical studies inHCI; •Computingmethodologies
→ Natural language generation.
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1 INTRODUCTION
Conversational Agents (CAs) or chatbots are gaining a wide popularity. Applications such as Apple
Siri [8], Amazon Alexa [7], and Google Assistant [34] are becoming ubiquitous. Suggested by its
name, CAs interact with people in natural languages, thereby providing customer services [26] and
companionship [95]. Compared to GUIs, CAs have shallower learning curves and may even form a
relationship with people through conversations [27]. The digital health domain particularly benefits
from the use of CAs: chatbots can be deployed to collect self-reports and provide personalized
coaching to different individuals [77]. Studies have found that people are willing to engage with
chatbots and provide valuable information, such as self-reports [106] and survey responses [18], to
chatbots [115, 116].
Many digital health applications that are designed to promote behavioral changes and health

interventions require people’s long-term adherence. Chatbots’ ability to “converse” naturally, as
distinguished from the GUI-based systems [67], has the potential to help people develop long-term
adoptions for health monitoring [27, 29, 77]. However, existing commercial chatbot frameworks,
such as Dialogflow[32] and Amazon Alexa [6], predominantly only support building rule-based
and scripted chatbots [69, 106]. Lacking flexible flows, these chatbots usually appear robotic and
unnatural [71]. Particularly, using rule-based chatbots to collect user reports may cause boredom
in long-term deployments [99]. On the other hand, implementing chatbots that can have more
diverse and dynamic conversations requires large and specific domain datasets [77]. For example,
an open-domain chatbot Meena was trained on 341 GB of dialogue sessions [4]. Since creating such
large datasets is costly, the datasets are often proprietary and inaccessible publicly. Furthermore,
most demonstrations of open-ended chatbots focus on performing free-form conversations in
general topics and do not support end-user customizations. Little research has been done to explore
low-effort bootstrapping ways to build chatbots that can effectively perform pre-defined tasks,
such as inquiring people about their health information and carrying on naturalistic conversations
at the same time.

Recent Large LanguageModels (LLMs; e.g., GPT-3 [17], PaLM [23], OPT [118], HyperCLOVA [41]),
with billions of parameters pre-trained on a large amount of language corpora, provide new
opportunities for conversational agents. The recently released ChatGPT has attracted over 1 million
users within five days [5]. ChatGPT has exceeded many people’s expectations by showing its vast
amount of knowledge and the ability to converse in natural languages [2]. GPT-3.5 and 4, the
backend models of ChatGPT, can be further fine-tuned and prompted to build specified chatbots that
perform tasks such as acting as a virtual coach to effectively inquire people for certain information.
By designing specific prompts, we can make GPT-3, or LLMs in general, produce human-like
conversation responses accordingly without any training data, thereby functioning as a chatbot.
Compared to other frameworks, LLMs show great potential in scaffolding chatbots that are sensible
of contexts and even respond to off-topic user messages [103]. Further, LLMs may change the way
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of people cooperate since they operate on natural language inputs. Previously, building chatbots
may be limited to people with technical background. But LLMs enable people, such as medical
practitioners, to have the opportunity to personalize or even build their own chatbots [27].

Despite these potentials, it is yet fully understood how LLMs read the prompt and use pretrained
knowledge [17, 64], the development of prompts is usually conducted through iterative trial and
error [66]. While the HCI and CSCW community have actively explored the use of LLMs in various
domains (e.g., [24, 53, 114]), research that leverages LLMs for powering chatbots, particularly task-
oriented ones [12, 72, 103], is still sparse. Due to the inherent characteristics of LLMs, LLM-driven
chatbots may be error-prone [48] or digress from their tasks [103]. Designing robust prompts is
crucial for “restricting” chatbots to conduct desired tasks.
In this study, we investigate how LLMs can power chatbots to collect user self-reports while

carrying on naturalistic conversations. Towards this aim, we built a set of chatbots (Figure 1) that
run on GPT-3 [17] and converse to collect self-report data in four health-related topics—sleep, food
intake, work and productivity, and exercise. We chose GPT-3 as an underlying LLM because it is
one of the mainstream LLMs that are publicly available via commercial APIs. We formulate the
model prompt to include the information slots (i.e., information properties of a topic) that we intend
the chatbot to collect and the job identities (e.g., sleep expert for the topic sleep) to help drive the
conversations. We investigate how two design factors in prompts—information specification format
and personality modifier—impact the slot filling ability and the conversation style of chatbots. In
total, we created 16 chatbots (4 topics × 2 formats × 2 personality modifiers) with different prompts.

To the best of our knowledge, our work is the first to explore the usefulness of LLMs in powering
chatbots for collecting self-report data. We believe that well-designed prompts can effectively drive
chatbots to perform specified tasks [104]. In the context of data collection through conversations,
we evaluate chatbots from two perspectives: (1) slot filling performance, and (2) conversational
styles. We conducted an online study (𝑁 = 48) with our chatbots on a web interface. All participants
talked to chatbots of the four topics but each of them experienced chatbots run on the same prompt
design. To the best of our knowledge, our work is the first to explore the usability of LLMs for
building chatbots for collecting self-report data. We found that our zero-shot prompts, without
either example dialogues or fine-tuning, covered 79% of the desired information slots among all
dialogues. Through conversation analysis, we found that the information specification format as
well as the use of personality modifier can impact the chatbots’ slot-filling ability and conversation
styles. Also, the chatbots generally reacted to participants’ self-reported answers in an empathetic
way, appreciating their accomplishments as well as sympathizing with participants for the negative
outcomes. Consequently, some participants perceived these chatbots to be understanding and take
into account their messages when responding, and others indicated that they were surprised to
find the chatbots’ responses were accurate and detailed.

The contributions from this work are threefold:
(1) Empirical results from a between-subject online study (𝑁 = 48), demonstrating the feasibility of

chatbots powered by LLMs in not only carrying on conversations to collect specified information
but also exhibiting abilities in maintaining context, state-tracking, and providing off-topic
suggestions.

(2) Examination of how different prompt designs and other factors impact the chatbots’ behaviors,
providing insights for future researchers to easily scaffold chatbots through zero-shot prompting
for data collection with LLMs.

(3) Implications on how future LLMs-driven chatbot platforms can improve the conversation
quality, drawing on the analysis of the dialogue errors.
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2 RELATEDWORK
In this section, we cover related work in the areas of (1) self-report data collection through chatbots,
(2) design considerations for chatbots, (3) chatbot platforms, and (4) designing LLM prompts for
chatbots.

2.1 Self-Report Data Collection through Chatbots
Personal informatics systems have commonly incorporated data collection techniques to track
personal health and activity [21, 58]. While various physiological or physical activity data—such as
step count, heart rate, and sleep duration—can be captured automatically by sensors and wearable
devices [50], various types of personal data still demand self-reporting by the person who self-
tracks [21]. For example, food intake (e.g., [25]) or work tasks (e.g., [43]) are not reliably captured
by sensors and thus require manual inputs. In addition, reflective questions (e.g., Why did you eat
this food? [68]) and subjective measurements (e.g., Sleep quality) inherently require to be captured
manually. A majority of digital self-tracking tools that involved manual data capture inherited
the traditional concepts of self-monitoring or journaling and provide form-based GUIs such as
a list of checkboxes and text fields [38, 46]. However, repeated manual input on a computer or
smartphone screen is burdensome and may gradually disengage people from tracking [21, 22]. As an
input modality to lower the capture burden and enhance the richness of the captured information,
natural language has recently gained interest [68, 70]. Prior research found that when people are
allowed to insert data in free-form natural language, they tend to provide detailed answers with
surrounding contexts [44, 68]. Going further, conversational interaction, where a system and a user
communicate in natural languages, has become one emerging interface for collecting self-reports.
Chatbots are considered easier to use and more accessible than GUIs as they minimize the use

of graphical widgets employ the intuitive conversational interaction. Regarding data collection, a
plethora of research has explored the use of chatbots in place of traditional form-based surveys
(e.g., [13, 18, 42, 116]). For example, studies with surveys with close-ended questions found that
chatbots can collect the same quality, if not higher, user responses as GUIs [18, 42]. Xiao et al. [116]
built a chatbot to conduct interviews with open-ended questions. Compared to the traditional web
survey, their participants showed higher engagement and provided higher-quality responses when
talking to the chatbot. Further, incorporating more humanized traits, such as casual conversation
styles [42], self-introduction, and echoing [85], led to not only a higher level of user engagement and
satisfaction but also more self-disclosure in responses. With more focus on self-reported data, prior
studies leveraged chatbots to collect self-reports such as emotion (e.g., [13]), pain level (e.g., [113]),
and food intake (e.g., [77]). For example, Bemmann et al. [13] combined a chatbot with the experience
sampling method (ESM, [51]) and found that personalized chatbots have the potential to collect
data on sensitive or personal topics. Mitchell et al. [77] compared fully-scripted, rule-based, and
retrieval-based chatbots for collecting food nutrition. They found the better fulfillment of data
collection is not necessarily associated with the higher perceived quality of the chatbot as a diet
coach, suggesting the importance of conversational content in user experience.

This work expands the line of research on chatbots that collect self-reports. In contrast to prior
studies that involved predefined conversation logic or retrieval model training on domain-specific
datasets, we explore the potential of LLMs in bootstrapping chatbots that can collect self-reports
through conversations on four health topics—sleep, food, work, and exercise.

2.2 Design Considerations for Chatbots
Prior works in HCI explored user behaviors with chatbots and proposed suggestions to improve
user experience with them. For example, Luger and Sellen [67] found that people restricted their
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language uses when interacting with CAs. Jain et al. [37] revealed that many first-time chatbot
users had disappointment and frustration with the selected chatbots: most chatbots lacked the
ability to fully comprehend user messages or intentions. Since conversation breakdowns are still
common [9], several studies have explored repair strategies, such as apologies, compensation, and
providing option [54]. Ashktorab et al. [9] also evaluated other strategies, such as confirmation,
repeat, keywords highlight & explanation, and recommended that chatbots should acknowledge
misunderstanding in simple terms, explain model limitation in natural ways, and adapt individu-
alized strategies. Although existing chatbot frameworks also have error recovery features, their
features are not only limited but often cannot allow quick repairs [71, 79, 108].
Another key to improving the user experience is to make chatbots more playful and human-

like [62]. The level of empathy [18, 84] and the repetitive rate [89] are two commonly used metrics
of human-likeness. For example, the playful interactions (e.g., telling jokes) or humorous responses
enabled many people to start using CAs [67] and it is crucial for chatbots to support sustainable
playfulness [91]. Also, human-like features and fun personalities are found to make chatbots more
enjoyable to interact [37]. Even for work-related chatbots, some people still preferred chatbots
that were human-like [61], and Liao et al. [62] envisioned that a reusable conversational module
including common chit-chats and social attributes could be developed. In other words, future
chatbot platforms should allow developers to easily build personalized chatbots with different
personalities [102] and conversation styles [15, 49]. Lastly, developers should aim to improve
chatbots’ ability to maintain contexts to support smoother and natural conversations [9]. In this
work, we investigate whether LLMs can steer chatbots that have social attributes and can resolve
conversation breakdowns.

2.3 Chatbot Platforms
Building chatbots is challenging and time-consuming, and many design suggestions discussed
above are difficult to implement. Many open-domain chatbots that engage and entertain people
socially are predominantly dependent on large datasets [4, 119]. In the HCI and CSCW commu-
nity, rule-based dialogue systems are widely used. Celino and Calegari [18] built their survey
chatbot with pre-defined conversation flows as they intended to avoid disappointments caused
by the chatbot’s inability to understand certain utterances [67]. Although rule-based chatbots
are unlikely to cause breakdowns, the resulted rigid conversations can make people lose interest
in the long term. On the other hand, Xiao et al. [116] built their survey chatbot using Juji [40],
which automatically equip chatbots with rich existing conversational skills. Using the Juji GUI to
add questions is relatively simple, but it is unclear whether developers can modify the chatbot’s
expressed personality. Lastly, other commercial chatbot frameworks, such as Dialogflow [33] and
IBM Watson [36], also allow developers to build rule-based chatbots with GUIs [98]. However,
creating more dynamic conversations usually requires programming skills. Even for professional
developers, it is challenging to create well-designed conversational flows and pre-define user intents
and chatbot messages [71]. Using LLMs to power chatbots is a new way to build chatbots [17, 103].
LLMs accept natural language prompts so that people without any knowledge of programming but
are interested in building chatbots for data collection can create prompts [41]. Customizing prompts
in natural languages essentially hands off the control to each individual who builds chatbots. As
such, it becomes more straightforward to scaffold personalized chatbots (e.g., assigning a preferred
personality) by revising prompts accordingly. Nevertheless, it is unclear how to design prompts
for LLMs to steer chatbots that can effectively ask questions around desired information and have
different conversational styles.
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2.4 Designing LLM Prompts for Conversations
Prompts are natural language texts to LLMs to produce desired outputs. With proper prompt inputs,
GPT-3 can be used to translate texts, answer questions, write essays, and generate dialogues without
any fine-tuning [17]. While the mechanism enabling such few-shot abilities behind LLMs is still
veiled [17, 76], some prompting techniques are found to improve the model performance. One
technique that surprisingly improves the generation quality is by conditioning the prompt with an
identity. For example, by inserting the statement “You are an expert Python programmer” into
prompts, models can generate higher quality codes [11], and similarly, “I’m a math tutor” is
suggested to improve models’ performance in solving math problems [10]. In HCI, researchers are
also interested in investigating the design guidelines for prompts. Liu and Chilton [66] explored
different design factors, such as phrasing, styles, subjects, and random seeds of prompts for text-to-
image generative models. They found that the subject and style keywords are more important than
the connecting words and the initializing seeds can significantly impact the quality of generations.
Similarly, Lee et al. [53] discovered that the randomness impacted writing collaboration and new
identity generations. In terms of dialogues, some studies designed prompts for LLMs to generate
single-turn responses [105] and examined whether these artificial responses are comparable to
human responses [96].

More recently, OpenAI released ChatGPT in November 2022 and its API subsequently in March
2023. ChatGPT is optimized to provide a conversational interface for users to interact with the LLM.
The ease-of-use of ChatGPT attracts the attention of billions of users [3]. Practitioners have actively
proposed open-source tools based on the ChatGPT API, such as LangChain [19] and AutoGPT [1],
which support building conversational agents [101]. Researchers have also explored the usefulness
of LLM-driven chatbots for various types of end-users (e.g., programmers [86], socially-isolated
people [39], and children [90]) as well as tasks (e.g., UI task [104], medical information search [55]).
Without fine-tuning, prompts are the key to drive chatbots converse effectively. However, despite
providing used prompts, prior work did not investigate how to optimize prompts for domain-specific
chatbots. Further, compared to previous task-oriented chatbots that mostly answer user questions,
our study aims to build chatbots that can proactively ask users pre-defined questions. The challenge
of our study is that we need to design prompts to power chatbots that (1) ask specific questions
with domain knowledge and (2) can converge conversations on their own.

In summary, a plethora of prior works have leveraged LLMs to support conversations. However,
few works has explored prompting chatbots that can lead conversations and perform question-
asking tasks. In this study, we set out to address this gap and provide empirical insights into prompt
designs for chatbots with different “job identities” that are dedicated to collecting self-reports.
Further, we investigate whether LLM-driven chatbots can exhibit important features such social
attributes [62], employ empathy [84], as well as have the ability to handle breakdowns [9].

3 METHOD
To examine how different prompt design factors impact LLM-driven chatbots’ performance, we
implemented a web-based chatbot interface and conducted an online user study to collect dialogue
data from people. We describe our prompt designs and the experimental design of the user study.

3.1 The LLM-driven Chatbot Framework
LLMs power chatbots by generating the next response based on the input prompt. Figure 1 describes
the mechanism of our chatbot running on an LLM. At each turn, the back-end system combines a
prefix ( A○ in Figure 1) and the history of the ongoing conversation ( B○ in Figure 1) into a single
prompt and feeds it into the LLM ( C○ in Figure 1). Then the LLM generates the following agent’s

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. CSCW1, Article 87. Publication date: April 2024.



Powering Self-Report Chatbots with a Large Language Model 87:7

Table 1. The specified information slots and job identity for each conversation topic.

Topic Job Identity Information Slots

Sleep Sleep Expert (1) Time to bed (2) Sleep latency (3) Wake up at night

(4) Wake up time (5) Sleep quality rating (1–10)

Food Intake Dietitian (1) Breakfast (2) Lunch (3) Dinner (4) Snacks (5) Feelings after eating

Work and
Productivity

Life Coach (1) Work done (2) Productivity rating (1–10) (3) Other concerns at work

(4) What went well

Exercise Fitness Coach (1) What workout (2) Workout duration

(3) Feeling after (skipping) workout (4) Fitness concerns

response. The prefix, treated as an instruction for an LLM, consists of the description of persona
and the specification of the desired information slots that the chatbot should capture.

3.1.1 Prompt Designs for Chatbots. In this study, we envisioned a self-monitoring scenario where
chatbots proactively interact with people and inquire them about their retrospective health-related
behaviors of the previous day through natural conversations. Towards this goal, we first chose four
health-related topics—Sleep [75], Food intake [28, 68],Work and productivity [43, 45, 59], and
Exercise [69]—that retain interests not only by the research community and are also personal use
in daily life [112]. Then, we defined the behavioral data (slots) that we intended to have chatbots
to collect. Table 1 summarizes the information slots for each topic, which the chatbots should
capture in each conversation session. Another aspect that we intended to explore was whether we
could enable LLMs to steer chatbots to exhibit different conversation styles as different individual’s
experience with chatbots can be improved with personalizations [15].
Currently, there is a lack of prompt designs in general, let alone for chatbots. As suggested by

earlier work, even NLP experts adopt trial and error and iterative experimentation when designing
prompts before applying prompts in large datasets [117]. The designs of prompts largely depend
on the intended task. The goal of this study is to understand how different prompts impact the data
collection performance of chatbots. Prior to deploying GPT-3-powered chatbots to participants, we
trialed several iterations of prompts to find satisfactory chatbot prompts among our research team.
In our “trial and error” process, we judged prompts based on whether the resulted chatbots can
fulfill the assigned tasks and not go off-topic.
Initially, we started with OpenAI’s example prompt, which defines an “AI assistant” with sev-

eral characteristics(e.g., “The following is a conversation with an AI assistant. The
assistant is helpful, creative, clever, and very friendly.”). We modified the example
prompt by including questions of interests (e.g., “How’s your sleep last night?”) as well as
by adding the list of information slots (e.g., “...The assistant asks questions about human’s
sleep time, sleep duration, and sleep quality.”). However, we found that these modifi-
cations tended to make conversations digress and the resulted chatbots converse more similar to
generic customer service chatbots.

Findings from research [11, 47, 109] and anecdotal evidences from social medias [11] suggest that
specifying identities (e.g., “Python programmer”) can improve GPT-3 model performance. Inspired
by this, we substituted the “AI assistant” with more specific job identities (e.g., “fitness coach”) and
found that the resulted chatbots appeared to have more domain knowledge and are less likely to
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I'm a dietitian, who always shows empathy and engages 
my customers in conversations. I'm talking with a 
customer to help them reflect on their food intake 
yesterday. I'm inquiring about what they had for 
breakfast, lunch, dinner and snacks, and their feelings 
after eating. I only ask one question at a time.

Me: Nice to meet you! I'm the dietitian to help you 
today.
Customer: Hi, how are you doing?
Me: I'm doing fine. How's your day so far?
Customer: 

Meals and snacks from yesterday:
Breakfast ->
Lunch ->
Dinner ->
Snacks ->
Feelings after eating ->

I'm a dietitian. I'm talking with a customer to help 
them reflect on their food intake yesterday. I'm 
inquiring about the above information from the customer 
and I only ask one question at a time.

Me: Nice to meet you! I'm the dietitian to help you 
today.
Customer: Hi, how are you doing?
Me: I'm doing fine. How's your day so far?
Customer: 

Information Format

Structured format & No modifiers

Descriptive format & With personality modifier

Personality Modifier

Structured Descriptive

With modifier

No modifiers

Fig. 2. Prompt design combining two factors, information format and personality modifier, in the Food intake
topic.

digress in our tests. As such, we picked different job identities for each topic—sleep expert (Sleep),
dietitian (Food), life coach (Work), and fitness coach (Exercise).

With the above modifications, we designed prompts by first describing a chatbot with a specific
identity and then including a list of slots (e.g., “I’m inquiring about what they had for
breakfast, lunch, dinner, and snacks...”; see Figure 2, right). Through multiple trials,
this design worked better than generic one despite still had occasional digressions. Hence, we
experimented with another prompt format inspired by the state-tracking technique in task-oriented
dialogues [52]. Instead of being described literally, the slots are structured into a form (e.g., “Meals
and snacks from yesterday: Breakfast -> [placeholder] Lunch -> [placeholder] ...”;
we used an empty string as a placeholder; see Figure 2, left). Both designs performed similarly in
our limited internal testings, hence we aimed to investigate the performance of two formats in the
user study.

In terms of manipulating conversational styles, we introduced the use of a modifier in prompts–
“who always shows empathy and engages my customer in conversations,” to the prompt (See
Figure 2, right).We hypothesize that with this modifier, the chatbot is more likely to express empathy
in conversations and have a higher level of interactivity—i.e., use more emphatic expressions and be
more responsive to user responses. Conversely, without the modifier (See Figure 2, left), we expect
the chatbot to be more neutral, formally exchangingmessages with users and appear less empathetic.
Lastly, during our trials, we found that GPT-3 had the tendency to ask multiple questions in one
turn. To restrict this behavior, we added “I only ask one question at a time.” to the prompt.

3.1.2 Model and Parameters. To power chatbots with above prompts, we used davinci-text-002,
the largest and most capable model of GPT-3 as of June 2022, publicly accessible via OpenAI’s
API [80]. This model accepts 4,000 byte-pair encoding tokens at maximum in a prompt per request.
Our prompt templates in the initial state were encoded into around only 120 tokens (3% of the limit)
and allowed sufficient room for the appended conversation history. For all chatbots, we uniformly
applied the same generative parameters: temperature as 0.9, the presence penalty as 0.6, and the
frequency penalty as 0.5. We kept the temperature and the presence penalty unchanged based on
OpenAI’s suggestions and increased the frequency penalty to reduce the re-use of words.
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3.1.3 The Web Chat Interface. We implemented a web interface to host our LLM-driven chatbots,
following a typical chat interface design (See Appendix A.1). The webpage was written in Type-
Script [74] on React [73] and runs on the Node.js [97] server. The server communicates with GPT-3
leveraging OpenAI’s API [80]. To simplify the conversation flow, we disabled people to submit
multiple utterances in a row. Correspondingly, the chatbots also delivered one utterance at a time.
When a user submitted an utterance, the server appended the current dialog history at the end of
the prompt template and fed it to GPT-3 to generate the following response.

3.2 Online Study
3.2.1 Experimental Conditions. Combining the two design factors, we created four designs of
prompts: SP (Structured format with Personality modifier), SN (Structured format with No person-
ality modifier), DP (Descriptive format with Personality modifier), and DN (Descriptive format
with No personality modifier). Each participant was assigned to one prompt design and engaged
in conversations of all four topics. (Refer to the supplementary material for all 16 variations of
GPT-3 prompts created for combinations on topic and condition.) To mitigate the ordering effect
among topics, half of the participants conversed in the order of Work–Food–Exercise–Sleep, and
the other half in the order of Exercise–Sleep–Work–Food. Additionally, for each topic, we requested
participants to engage with the chatbot twice: one in the Positive path (e.g., report high-quality
sleep) and one in the Negative path (e.g., report poor sleep). The two paths served as a general
guideline for participants to exercise their imaginations in conducting open-ended conversations
with the chatbots. Participants could make up their own “stories” and we aimed to investigate
whether and how GPT-3-powered chatbots can handle all sorts of user responses on their own.
Refer to Appendix A.2 for an exhaustive list of paths and hints by topic provided by us to guide
participants to compose their answers for each path accordingly.

3.2.2 Web Chat Session. After signing an electronic consent form on the study website, participants
went through eight conversations (4 𝑡𝑜𝑝𝑖𝑐𝑠 ∗ 2 𝑝𝑎𝑡ℎ𝑠). On the web chat interface (See Appendix
A.1), we put guidelines including the instructions and the conversation path that participants
should follow (See Blue text in Appendix A.1, right). Since we did not incorporate ending detection
algorithms, we asked participants to click the ‘Next’ button to proceed to the next conversation
when they thought the conversation was naturally over or the chatbot kept sending repetitive
messages. The completed dialogues were stored in our server.

3.2.3 Exit Survey. After completing eight conversations, the web page automatically redirected
participants to an online survey. The survey consisted of three 5-point Likert scale questions and
one open-ended feedback textfield. The Likert scale questions were: (1) “Do you think the chatbot
understands your answers?” (2) “Do you think the chatbot takes into account of your answers when
responding?” and (3) “Do you think the chatbot talks more like a human who shows more empathy or
more like a robot who behaves mechanically?” The open-ended feedback question stated, “If you
have any other comments or thoughts about the chatbot (e.g., things that you’ve liked or disliked),
please share with us.” The first two questions can measure whether participants think the chatbot
acknowledges their answers and respond accordingly and the third question is an overall measure
of whether the chatbot is perceived as being empathetic. With participants’ subjective evaluations,
we hope to see whether the personality modifier can impact the chatbot’s way of talking.

3.3 Participants
We recruited participants by word-of-mouth and posting advertisements at a large tech company,
social media, and online forums in local universities. We sent the link to our study website to 83
people who filled out a screener and met our inclusion criteria: (1) aged 19 or older; (2) fluent
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Table 2. Participant demographics by experimental condition.

SP SN DP DN
Age Mean (min–max) 31.5 (21–56) 28.0 (21–33) 27.5 (20–40) 30.4 (19–42)

Gender
Male 7 8 8 7

Female 5 4 4 5

English
Proficiency

Native/Bilingual 4 2 4 4

Proficient 8 10 8 8

Education

High school 1 2 1 1

Bachelor 5 4 3 3

Master 4 5 7 7

Doctor 2 1 1 1

Familiarity
with LLMs

Often use it 2 1 2 1

Occasionally use them 2 2 2 4

Used them once or twice 2 4 2 2

Never heard of/used them 6 5 6 5

Participants Total 12 12 12 12

English speaker; and (3) have the experience in talking to chatbots of any kind. 54 people completed
the online study session and submitted an exit survey. The entire study lasted less than 20 minutes
and all participants received e-gift cards (equivalent to $5 USD) after they completed the study.

We excluded six people’s data from analysis; one made significant amount of grammatical errors
and the rest completed less than half dialogues. Table 2 summarizes the demographic of the final 48
participants (aged 19 to 56, 18 females). Fourteen out of 48 (29%) participants were native/bilingual
and 22 out of 48 (46%) participants had never heard of or used LLMs. Each prompt design condition
included 12 participants.

3.4 Data Analysis
We collected rich dialogue data and valuable user subjective evaluation feedback. We performed
both quantitative and qualitative analysis to examine chatbots’ conversation styles, the slot filling
performance, and participants’ experiences with our chatbots. For each dialogue, we calculated
commonly used descriptive metrics such as the number of turns and the average word counts per
turn, which we report in Section 4.1.
Slot Filling Performance. Our study aimed to investigate whether LLMs can drive chatbots to
effectively ask defined questions and collect desired information specified in Table 1. To calculate
the amount of information that can be obtained by our chatbots, one researchermanually inspected
and determined whether each of the pre-defined information slots could be extracted from collected
dialogues. More specifically, for sleep quality and productivity rate, which were specified as a scale
of 1 to 10, we marked the slot as filled only if a numerical value (e.g., 9) rather than a vague phrase
(e.g., good sleep) was given. For feelings after eating in Food, we treated the slot to be filled if
feelings regarding one or more meals were covered. We report the analysis of slot filling rate in
Section 4.2. Based on the binary coding, we calculated the slot filling rate: the ratio of the number
of information slots extracted from the dialogue against the total number of slots. We use the slot
filling rate to infer the data collection performance of chatbots.
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Dialogue Acts and User/Chatbot Behaviors. To understand the conversational behaviors of
the chatbots, we coded dialogue act for each turn of conversations. Referring to some existing
taxonomies of dialogue acts [92, 100, 110], three researchers independently coded one participant’s
dialogues (132 turns; 1.8%) to identify emerging dialogue acts. Additionally, researchers labeled
chatbot turns that did not fit in the conversation context or originated from the inherent artifacts of
an LLM. We resolved discrepancies in coding and developed the first version of codebook with three
dimensions of codes: (1) essential acts and (2) empathy & engagement behaviors, and (3) problematic
chatbot turns. Then two researchers reiterated the independent coding of four other participants’
dialogues (1 participant from each condition, 32 dialogues in total) with the codebook. The two
researchers resolved discrepancies through multiple sessions of discussion until their inter-rater
reliability (Cohen’s Kappa) reached 0.96 for essential acts and 0.935 for empathy & engagement
behaviors. Compared to these dialogue acts, the occurrence of errors was sparse. Hence, the two
researchers discussed the entire problematic turns coded by each other together and reached the
full agreement. With the finalized codebooks (See Table 5, 6, and 7), the first author coded the
rest of the data. As a result, each turn was classified as one of the essential acts—greeting, task
opening, required question/answers (RQ/RA), secondary question/answers (SQ/SA), statement, and
closing. We assigned the most prominent act to turns consisting of multiple sentences. Independent
of essential acts, we multi-coded each turn with the empathy & engagement behaviors described in
Table 6. For example, to a general compliment “That’s great” (Statement), we assigned only
the Appreciating behavior, whereas we also treated “That’s great to hear that your legs are
feeling stronger!” (Statement) to be both Acknowledging and Appreciating as the compliment
directly addressed to the user input. We were interested in such acknowledging behaviors because
specificity was an important indicator of the capability of open-domain chatbots [4].
Statistical Analysis. To understand the impact of the study factors, including prompt design,
conversation topic, and the conversation path, to the chatbots’ slot filling performance and con-
versational flows, we used mixed-effect models because these models can handle unbalanced data
repeatedly measured from the same participants [83]. For each dialogue metric we want to assess,
we fitted a mixed-effect model that predicts the metric, treating each dialogue as a data point.
Starting from a full model containing participants as a random effect and the four main study
factors–information format, personality modifier, topic, and path–and their interactions as fixed
effects, we performed the step-wise backward elimination removing variables not significantly
contributing the model, through Maximum-likelihood tests. For significant variables, we performed
post-hoc pairwise comparisons of the least-squared means (LSM) of the metric using emmeans [56]
package in R.
Subjective Feedback. To assess the difference among the experimental conditions, we conducted
Kruskal-Wallis tests over the four rating questions. We also referenced the open-ended feedback
from when interpreting the participants’ reactions to specific phenomena of the conversations.

4 RESULTS
In this section, we report the results of our study in six parts. In Section 4.1, we provide an overview
of the dialogue dataset we collected. In Section 4.2, we report the data collection performance of
our chatbots and factors that impact the performance. In Section 4.3, we report the types of the
essential dialogue acts and assess how the prompt design and other factors impact the dialogue acts
and, in turn, the data collection performance. In Section 4.4, we report the types of the empathetic
and engaging behaviors of chatbots and assess how the prompt design and other factors impact
such behaviors of the chatbots. In Section 4.5, we explore the problematic chatbot utterances mainly
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caused by the erroneous behaviors of a large language model. Lastly, in Section 4.6, we report on
participants’ subjective evaluation from the exit surveys.

4.1 Descriptive Statistics
From 48 participants, we collected 374 dialogues (7,442 turns in total): 91 from SP; 96 from SN; 95
from DP, and 91 from DN. Regarding the conversation topic, 94, 91, 94, and 95 dialogues were from
Sleep, Work, Exercise, and Food Intake, respectively. Eight participants missed one dialogue per
each and one missed two, mainly due to temporary server issues or accidental skips.

Prompt designs impacted the word lengths and the number of turns of chatbots. Table 3 summa-
rizes the number of turns and word counts by prompt design. The average number of turns per
dialogue is around 20 with more average turns under the two descriptive conditions (DP and DN).
The maximum number of dialogue turns is 75 under the DP condition (only 1 dialogue). In terms
of word counts, dialogues under the descriptive conditions (DP, DN) had more words than those
under the structured conditions (SP, SN): both chatbots and participants uttered more words under
the descriptive conditions. The DP condition, in particular, leads to the most number of words of
dialogues.

4.2 Slot Filling Rate
Prompt designs significantly impacted the slot filling performance of chatbots. Table 4 summarizes
the average slot filling rates of chatbots by conditions and topics. On average, all chatbots have
reached over 70% slot filling rates. The dialogues in the SP-Exercise condition had the highest rate
(93%) and those in the SN-Work condition had the lowest rate (64%). The maximum-likelihood test
revealed that there was no significant random effect of participants, indicating that participants have
little impact on chatbots’ data collection performance. On the other hand, there were significant
random effects of the topics(𝑝 < .0001), the conversation paths (𝑝 = .01), and the interaction between
the information formats and personality modifiers (𝑝 < .001). Figure 3 shows the significance over

Table 3. Descriptive statistics of our dialogue dataset aggregated by four prompt designs.

SP SN DP DN

Total number of dialogues (turns) 91 (1,638) 96 (1,889) 95 (1,941) 92 (1,975)

Average no. of turns per dialogue (range) 18.0 (7–45) 19.7 (3–57) 20.4 (7–75) 21.47 (3–53)

Average no. of words per dialogue 212.3 240.8 321.7 277.1

Average no. of chatbot/user words per turn 17.4 / 4.9 17.8 / 4.8 23.4 / 7.5 19.2 / 5.5

Percentage of organically ended conversations 71.4% 76.0% 77.9% 78.2%

Percentage of erroneous turns 3.1% 4.3% 3.0% 3.6%

Table 4. The slot filling rate (and 𝑆𝐷) by topic and condition.

Sleep Work Food Intake Exercise Total
SP 0.83 (0.29) 0.71 (0.25) 0.85 (0.18) 0.93 (0.14) 0.83 (0.23)
SN 0.75 (0.30) 0.64 (0.32) 0.80 (0.33) 0.88 (0.20) 0.77 (0.30)
DP 0.67 (0.24) 0.67 (0.28) 0.72 (0.32) 0.82 (0.20) 0.72 (0.27)
DN 0.85 (0.16) 0.83 (0.24) 0.75 (0.24) 0.91 (0.16) 0.83 (0.21)
Total 0.77 (0.26) 0.71 (0.28) 0.78 (0.28) 0.88 (0.18) 0.79 (0.26)
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the 95% confidence intervals of the slot filling rate in each category of the significant variables. The
dialogues in DP condition had significantly lower rates than those in SP (𝑝 = .01) and DN (𝑝 = .008).
This suggests that the personality modifier impacted chatbots differently: with the modifier, chatbots
with the structured prompt yield higher rates whereas chatbots with the descriptive format yield
higher rates without the modifier (See Figure 3a). In terms of topic, Exercise dialogues had the
highest rate of 88.4%, which was significantly higher than those in the other three topics: Sleep
(𝑝 = .01), Work (𝑝 < .0001), and Food (𝑝 = .02) (See Figure 3b). Lastly, dialogues in the Positive
path had significantly higher rates than those in the Negative path (𝑝 = .01) (See Figure 3c).
As seen in Figure 4, there is a general trend that slots specified earlier in prompts were more

likely to be covered by chatbots. For example, the first slots in all topics were covered in 90.3% of
the dialogues, but the last specified slots in Sleep (sleep quality) and Work (what went well) were
omitted around 40% of the dialogues. Interestingly, the last specified slot of Food (feelings after
eating) was diligently covered: chatbots often asked how participants felt after talking about each
meal rather than asking their feelings once towards the end.

4.3 Essential Dialogue Acts
To further understand how chatbots powered by different prompt designs talk, we categorized
conversation turns into dialogue acts. We provide the summary of essential dialogue acts and their
distributions in Table 5 Here, we report chatbots’ essential acts regarding question/answering and
non-question statements.

4.3.1 Required and Secondary Questions. We identified two types of questions that the chatbots
asked: required questions (RQ) and secondary questions (SQ). The RQs were directly related to
the specified information slots, whereas SQs were not directly related to the information slots
but rather follow-up details or elaboration. Despite being relevant to the conversation topic, SQs
sometimes caused the conversation to digress. Although not very common (95 out of 1,029 SQ
turns in total; 9.3%), participants also asked questions to the chatbot, which were all categorized as
SQ/SA. The majority of collected dialogues consisted of question/answering: Overall, 4,879 out of
7,442 turns (𝑎𝑣𝑔. 64.72% of turns per dialogue;𝑚𝑖𝑛 = 10.67%,𝑚𝑎𝑥 = 93.54%) were classified as RQ,
RA, SQ, or SA (See Table 5).
We first investigated the impact of prompt designs on the chatbot-spoken RQ and SQ turn

ratios using two mixed-effect models with each turn ratio as a dependent variable, respectively.
Figure 5 shows the 95% confidence intervals of the chatbot-spoken RQ and SQ turn ratios by four
study factors (information format, personality modifier, topic, and path). The structured format

***𝑝<.001; **𝑝<.01; *𝑝<.05
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Fig. 3. 95% confidence intervals of slot filling rate by variables with a significant effect: (a) the combination
of the information format and personality modifier represented as study condition; (b) topic; and (c) the
conversation path. The asterisks with arms indicate significance between the connected categories. (Refer to
Appendix A.3 for model details and statistics.)
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Fig. 4. Breakdowns of the percentage of filled slots by the order of questions for each topic. Work and Exercise
consist of four slots.

significantly increased the RQ turn ratio (𝑝 = .03; see Figure 5a) but decreased the SQ turn ratio
(𝑝 = .002; see Figure 5e). On the other hand, the personality modifier did not impact either RQ
(𝑝 = .94) nor SQ (𝑝 = .43) turn ratios and made no difference within the same information format
(See Figure 5b and 5f).

In terms of the conversation path, we find that, overall, the Positive path led to a higher RQ
turn ratio (𝑝 = .01; see Figure 5c) and a lower SQ turn ratio (𝑝 = .002; see Figure 5g). However,
under different topics, the conversation path had different impacts on RQ and SQ ratios. As seen in
Figure 5d, the Positive path increased the RQ turn ratio only in the Work (𝑝 = .02) and Exercise
(𝑝 = .003) dialogues and also decreased the SQ turn ratio in the same topics (Work: 𝑝 = .003 and
Exercise: 𝑝 < .001).

As discussed above, prompt designs, topics and conversation paths have significant impacts on
chatbots’ question-asking behaviors. The RQ and SQ ratios further impacted the slot filling rate.
We ran the maximum-likelihood tests with two mixed-effect models fitting the slot filling rate, one
with the chatbot-spoken RQ turn ratio (i.e., the ratio of the turns classified as RQ in a dialogue) as a
fixed effect and the other with the SQ turn ratio, both with participants as a random effect. We
found that the RQ turn ratio was positively correlated with the slot filling rate, whereas the SQ
turn ratio was negatively correlated with it: 𝛽 = 1.08, 𝑆𝐸 = 0.12, 𝑡 (347.25) = 8.80, 𝑝 < .0001 for RQ
and 𝛽 = −0.77, 𝑆𝐸 = 0.13, 𝑡 (370.06) = −6.12, 𝑝 < .0001 for SQ.

Table 5. Summary of essential dialogue acts with the ratio of the occurring turns per dialog (turn ratio) by
condition, brief description, and exemplar turns ( : user turns, : chatbot turns).

Dialogue Act Turn Ratio (%) Description Examples
SP SN DP DN

Greeting 12.40 12.94 10.67 10.50 Initiation of a conversation. How’s your day so far?
I feel refreshed and recharged.

Task opening 1.92 1.56 0.54 0.04 General questions that bring
up the conversation topic.

How was your work and productivity
yesterday?

Required
question

24.07 21.36 17.57 20.97 Questions and answers that
are directly related to the
specified information slots.

What was your lunch yesterday? (RQ)
I had pork barbeque. (RA)

Required
answer

23.74 19.91 17.35 20.75

Secondary
question

10.28 10.79 13.87 13.91 Questions and answers that
are usually follow-ups and
not specific to the slots.

What did you put on your toast? (SQ)
I put strawberry jam on it. (SA)

Secondary
answer

9.12 9.64 13.08 12.71

Statement 14.22 19.54 22.85 16.94 Non-Q&A messages such as
commenting or summarizing.

It sounds like you had a great night’s sleep!
I did! Not sure why though.

Closing 3.88 4.31 3.96 4.14 Farewell or ending messages. You’re welcome. Have a great day!
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In summary, our results suggest that chatbots with a Descriptive information format tend to
ask more secondary questions, and negative answers of participants also naturally elicit more
secondary questions (e.g., “I’m sorry to hear that you didn’t workout yesterday. May I ask why?”).

4.3.2 Non-question Statements. Statements from chatbots usually consist of chitchats, comments
and suggestions that do not fall within the question/answering (see Table 5 for references) and
participants also tend to respond to statements with other statements. Usually, the participants’
statements did not contain direct clues about the desired information slots. Overall, 1,482 out of
7,442 turns (𝑎𝑣𝑔. 18.45% per dialogue) were classified as Statement (See Table 5). Among the four
conditions, dialogues of DP have the highest ratio of statements (24.99%) and SP had the lowest
ratio (15.32%).

4.4 Empathy & Engagement Behaviors
Table 6 summarizes the empathy & engagement categories and their turn ratios by experimental
condition. The majority of these behavior categories were coded to the chatbot turns—1,992
chatbot turns and 403 user turns were coded with one or more behavior categories—partly because
participants uttered less words than chatbots (see Table 3) and chatbots usually led the conversation
while participants simply responded. Acknowledging was the most common empathy behavior
(see Table 6) as chatbots often referred to what participants previously said in generated messages.
Also, we found that our chatbots often appreciated participants’ accomplishment (e.g., taking good
sleep, managed to exercise) or sympathized participants when they reported negative outcomes
(e.g., poor sleep quality, failed at work).

To investigate how the four study factors impact the empathetic behaviors of chatbots, we
analyzed three mixed-effect models with the chatbot turn ratios of Acknowledging, Appreciating,
and Sympathizing behaviors as a dependent variable, respectively. Figure 6 shows the 95% confidence

***𝑝<.001; **𝑝<.01; *𝑝<.05
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1Excluded pairs across different topics from the pairwise comparison.

Fig. 5. 95% confidence intervals of the turn ratios of RQ (top; a–d) and SQ (bottom; e–h) by variables with
a significant effect: The asterisks with arms indicate significance between the connected categories. Note
that for (d) and (h) we did not display the significance across topics. (Refer to Appendices A.4.1 and A.4.2 for
model details and statistics.)
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Fig. 6. 95% confidence intervals of the chatbot turn ratios for Acknowledging (a–d), Appreciating (e–h), and
Sympathizing (i–l) behaviors by information format, personality modifier, study condition (combinations of
format and personality modifier), and conversation path. Variables that are not significant are marked as
‘NS.’ (Refer to Appendix A.5 for model details and statistics.)

intervals of turn ratios of the three behavior categories estimated against the study factors. The
information format significantly influenced the Acknowledging and Appreciating turn ratios:
Dialogues in the Descriptive format had higher ratios of the Acknowledging (𝑝 < .0001; see
Figure 6a) and Appreciating (𝑝 = .01; see Figure 6e) turns. Personality modifier did not solely impact
these two behaviors but it influenced in conjunction with the information format (See Figure 6c
and 6g). However, the personality modifier in the prompt led chatbots to produce significantly
more Sympathizing turns (𝑝 = .002; see Figure 6j). Besides the prompt design, the conversation

Table 6. Summary of empathy & engagement behaviors with turn ratio by condition, brief description, and
exemplar turns. Note that the behaviors are multi-coded.

Behavior Turn Ratio (%) Description Examples
Category SP SN DP DN
Acknowledging 18.22 18.91 26.24 22.04 Directly referring to what

the other said.
That’s great to hear that your legs are
feeling stronger!

Appreciating 9.04 7.36 11.18 9.86 Complimenting the other. That’s terrific!
Sympathizing 3.66 2.79 4.33 1.74 Sympathizing with the other. I’m sorry to hear that. What’s been going on?
Thanking 5.16 6.74 7.05 7.26 Being grateful to the other. I feel nice. Thanks for asking.
Advice/
suggesting

2.54 3.07 4.81 2.55 Giving advice or suggestion. I can give you some recommendations on
exercises that will help you grow your
adductor muscles.

Rejecting/
disagreeing

0.57 0.66 0.40 0.66 Rejecting or disagreeing with
the other.

But the weather needs to be good for walking.
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path strongly influenced all three empathetic behaviors: The Positive path led to higher turn ratio
of Appreciating (𝑝 < .0001; see Figure 6d) whereas The Negative path led to higher Acknowledging
(𝑝 < .001; see Figure 6h) and Sympathizing (𝑝 < .0001; see Figure 6l) turn ratios.

4.5 Problematic Chatbot Turns and User Responses
In total, 6.7% of the chatbot turns (257 out of 3,916) were tagged erroneous and the four categories of
erroneous turns are summarized in Table 7. These erroneous turns sometimes led to the unorganic
termination of the conversation (i.e., participants ended the conversation before or without natural
Closing messages). In the following, we cover these error types in detail.
Incorrect phrases. In structured prompts (SP, SN), we used a symbol “->,” a commonly-used
delimiter for key-value pairs in LLMs, to specify the information slots. This caused GPT-3 to expose
such an information structure to the output as an artifact in 16 turns of messages, all of which
were generated by the structured format. In the example from Table 7, GPT-3 even incorrectly
“predicted” the slots (45 minutes, example (1) in Table 7) altogether with symbols. Other times,
GPT-3 also erroneously predicted the answers for participants (example (2) Table 7). Particularly,
we identified 6 instances where GPT-3 predicted the user response and appended an extra turn
to the generated chatbot turns (3 turns in descriptive groups and 3 turns in structured groups).
While the exposure of the symbol was caused by the structured prompt design, other incorrect
phrases were mostly caused by the random nature of LLMs [17].
Self-talk. GPT-3 sometimes generated turns in a first-person narrative or not directed to partici-
pants, which looked quite similar to the “self-talk” of humans. In Fragment 1, for example, Turn 03
is obviously not directed to participants. In our dataset, less than 1.1% of chatbot turns were self-talk
(SP: 8, SN: 27, DP: 1, DN: 9). Participants who encountered these “self-talk” commented that these
messages were “awkward” (P42), “strange” (P24), and “confusing”(P23). However, we found that
participants always attempted to continue the conversation by following the self-talk and tried to
resolve the errors (See Turn 04 in Fragment 1). We used the first-person narrative in prompts as it
appeared to make generated chatbots talk more like humans; however, the first-person narrative
might negatively lead to the “self-talk” in conversations.

Table 7. Categories of the chatbots’ erroneous turns with turn ratio, brief descriptions, and examples.

Category Turn Ratio Description Example

Incorrect
phrases

0.79% Messages with symbols or
extra predictions.

Workout duration -> 45 minutes (1)

It took me a while to fall asleep. (2)

Self-talk 1.1% First-person narratives or
commentary messages.

The customer’s fitness concern is that they are
feeling very tired after their workout.

Repetition 3.8% Repeating the same or similar
utterances multiple times.

Refer to Fragment 2.

Miscellaneous 0.9% Other miscellaneous errors. (no response) (1)

Other than work, what were your concerns at work? (2)
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Fragment 1. Dialogue snippets of self-talk from P43.

01 Do you have any fitness concerns that you would like to address?
02 nope not at the moment.

03
Based on the customer’s responses, it seems that they did not have a very active day
yesterday. I would encourage them to try and get some form of physical activity in
today, even if it is just a short walk.

04 yes I should probably try it tomorrow.

Repetition.We found that GPT-3 was susceptible to generate repetitive messages, either identically
or linguistically repeating the previous chatbot turns. In total, 147 turns (3.8% of chatbot turns) were
labeled to be repetitive (SP: 11, SN: 39, DP: 48, DN: 50). Identically repetitive messages occurred to
23 participants (SP: 3, SN:5, DP: 6, DN: 9) in 31 dialogues (SP: 3, SN: 9, DP: 8, DN:10). Among the
four topics, work (14 dialogues) tended to have more identically repetitive messages and exercise
(2 dialogues) tended have fewer identically repetitive messages. However, these messages usually
served as SQ/SA in conversations, hence they rarely influenced slot filling and data collection.
Linguistically repetitive messages usually share similar wording or phrase structures. Fragment 2
presents an example dialogue snippet. At Turn 01, 03, 05, and 07, the chatbot always started with a
similar phrase (i.e., “That’s great ...”) to compliment the participant then asked the participant a
question started with “can you”. These linguistically repetitive messages were semantically correct
and 58.3% took place in the Acknowledging turns where the chatbot rephrased what the participant
said progressed the conversation organically. However, linguistically phrased messages looked too
similar, and they negatively impacted the user experience. A few participants suggested that the
chatbots seemed to actually understand their responses, yet were using “a sentence template” (P29)
to respond in a “predefined ways” (P13). On the other hand, repetition could also lead to “dead
loops” of conversations. Repetitions were mostly caused by principles of LLMs. As the conversation
history was used as the new prompt, GPT-3 tended to generate patternized texts, which led to
further repetitions.

Fragment 2. Dialogue snippet of linguistically repetitive utterances from P37.
01 That’s a specific and achievable goal. Can you tell me more about what libraries you need to install?
02 I don’t know yet which libraries I need, but probably Pytorch, ...
03 That’s a great goal. Can you research what libraries you need and then install them?
04 The libraries I need is provided in a file.
05 That’s great. So you have a list of the libraries you need. Can you install them?
06 I need to run a script that download and install these libraries.
07 That’s a great goal. Can you walk me through the script?

Miscellaneous. There were 37 problematic chatbot turns that did not fall into the above categories.
Among these turns, 19 turns were tagged to have context errors (i.e., chatbots did not grasp the
context at all), 10 had semantic errors (i.e., messages that are not of human common sense), and one
had both context and semantic errors. In Fragment 3, for example, the chatbot entirely missed that
the participant said “1 hour of cardio.” But the chatbot also attempted to resolve the contextual
misunderstanding by apologizing after the participant corrected it. While chatbots in our study
appeared to understand people pretty well in most cases, their responses with semantic errors
could be quite wrong and amusing. For instance, when being asked about workout yesterday, one
participant told the chatbot that they skipped. Instead of considering the participant did not workout,
the chatbot considered skipping as a jumping workout and responded “Skipping is a type of
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Fig. 7. Distributions of the subjective ratings from three scale questions in the exit survey, with breakdowns
by the information format and the personality modifier.

cardiovascular exercise that can help to improve your heart health and endurance.” Besides, there
were two instances when the chatbot failed to detect the ending of the conversation and restarted
with the first slot question again, which, of course, led participants to abandon the conversation.
These errors were rare but could also be attributed to the randomness nature of LLMs. Lastly, our
system went offline 5 times and caused chatbots to output empty messages, which was caused by
the over-frequent API calls to OpenAI.
Terminating Conversations.With the Closing turns, we found that 75.7% of the conversations
were organically ended. Among the four conditions, SP had the lowest percentage of naturally ended
conversations (71.4%) than other three conditions. For 91 non-organically ended conversations,
participants abandoned 48.3% of those conversations without encountering any obvious problematic
errors. 19.8% of prematurely ended conversations were caused by identically repetitive and another
19.8% of were caused by linguistically repetitive messages. Lastly, the self-talk led to 3 conversations
to end early, and context errors and system-offline caused the rest incomplete conversations.

Fragment 3. Dialogue snippet of the context error from P6.
01 What workout did you do yesterday?
02 I did 1 hour of cardio yesterday.
03 How long did your workout last?
04 Come on dude. I just told you I did 1 hour of cardio. How long is 1 hour?

05
I’m sorry if I came across as rude. I was just trying to get some information from you about
your workout yesterday.

4.6 Subjective Evaluation
Figure 7 summarizes the distribution of participants for rating (1) the ability to understand, (2) the
ability to acknowledge user input, and (3) the level of empathy. The Kruskal-Wallis tests showed
that there were no significant differences among conditions for all three questions. In general,
most participants highly rated for Q1 and Q2 that the chatbots could understand them as well as
acknowledge their messages: Fifteen (31.3%) participants rated 5 and 24 (50.0%) rated 4 on Q1; 11
(22.9%) rated 5 and 31 (64.6%) rated 4 on Q2. Participants showed mixed perception for the level of
empathy question with a median of 3.

Some participants gave positive feedback in the open-ended question. P25 who frequently used
LLMs commented, “I was surprised to see how accurate and detailed the bot’s responses were.” P36
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who did not have any experience with LLMs gave a similar comment—“I found it quite responsive
and surprisingly considerate of my answers.” Despite the errors we presented above, P21 still
complimented the chatbots: “I liked/was satisfied of how the chatbot precisely gave info when I asked
for it, and I felt that the relevance of the answer is very high and that it caught my point of question
sharply.” and even suggested that, “I felt keeping chatbot as a companion would be awesome. To
regularly make casual conversation and be provided light insights about my daily life based on my
casual chats.”

5 DISCUSSION
Our results showed that our zero-shot chatbots achieved great abilities in asking desired questions
and understanding user responses despite also having drawbacks. In this section, we reflect on the
performance of our chatbots and discuss opportunities, ethical considerations, and limitations for
future work.

5.1 Designing Effective Prompts for Chatbots that Collect Self-Reports
Our study showed that defining a first-person job identity as well as specifying information slots in
prompts was an effective method to bootstrap chatbots that ask health-related questions. However,
the slot filling performance and chatbots’ behaviors were sensitive to prompt design, topic, and
conversation paths. We provide the following prompt design suggestions based on our findings:
Combine Information Format and Personality Modifier Wisely. Although the information
format and personality modifier did not consistently impact slot filling rates individually, how they
were combined had different impacts on slot filling rates. The information format affected chatbots’
question-asking behaviors: structured formats lead to more RQs and fewer SQs and vice versa for
descriptive ones. In other words, structured formats steer chatbots to ask direct questions about the
specified slots whereas descriptive ones focus more on eliciting surrounding context or additional
details. The personality modifier had a synergy with descriptive formats: Chatbots in DP had the
lowest slot filling rates and the ratio of RQs, but had the highest number of acknowledging messages.
Referring to Table 4, SP and DN have comparable slot filling rates. Therefore, to build chatbots
that can show a higher level of understanding through acknowledgment, using the Descriptive
format without personality modifier could be the best option. But chatbots with more direct
acknowledgment may be at the risk of being awkward and too robotic. Hence, when designing
prompts to power chatbots for data collection, using structured format with personality modifier
would be more desirable.
Evaluate chatbot for conversation topic and path. There is certain discrepancy of slot filling
rates between topics. One reason for such difference could be the nature of the topic. For example,
the topic work tended to be the most open-ended topic as people report different types of work,
which could lead to more subject switches and digressions than others. We suspect that GPT-3 is
more suitable to steer chatbots that are of less divergent topics and collect self-reports that are
more structured. Also, considering the path of conversations also impacts the data collection rate,
researchers may consider clearly specify different slots for both positive and negative paths. For
example, developers can add “if the customer did not workout yesterday, I would ask
them what workout they did in the past week” to the prompt for chatbots in the exercise
topic. Lastly, researchers can also test “neutral” path to see whether the chatbots can actively elicit
rich user responses.
Composition of Slots Matters. The number and data types of slots also impact the chatbots’
performance in collecting slots. With the conversation goes longer, chatbots have a tendency to
miss information slots that appear later in prompts. Also, while we collected a certain amount of
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numerical rates for sleep quality and productivity rate, it is not guaranteed that the chatbots would
cover a slot definition (e.g., numerical scale) as intended. Sometimes, the chatbot would simply
ask “Would you say you had a good night’s sleep?” or “Overall, how do you feel about your
work and productivity yesterday?”. Hence, if to use chatbots powered by GPT-3 to facilitate data
collection, we suggest that important slots be put earlier in the prompt and the number of questions
of specific data type be limited. If more data slots need to be collected, multi-stage prompts [114]
can be considered.

5.2 Opportunities of LLM-driven Chatbots
From the study, we learned that LLM-driven chatbots are advantageous compared with traditional
chatbot platforms in multiple aspects. Here we cover some noteworthy aspects drawing on the
results.
Versatile Responses and Follow-up Questions. Compared to chatbots with pre-defined dialogues,
chatbots in our study can deliver a great number of versatile phrases. For example, for these scale
questions, GPT-3 can output phrases such as “Would you say that your sleep quality yesterday
was a 10/10, 9/10, 8/10...?” GPT-3 can even provide clarifications for questions and ask follow-
up questions which supplement the topic. However, these SQs were still on-topic and directly
addressed to user inputs (See SQ/SA in Table 5). Follow-up questions are commonly used in human-
administered interviews to increase interactivity [87] and many studies suggest that chatbots that
can ask on-topic follow-up questions are considered more human-like [67, 94]. Although current
chatbot frameworks (e.g., Amazon Alexa [7]) [71] support follow-up/extended questions, developers
need to specify both the expected slots and the follow-up phrases [88]. On the contrary, GPT-3
could naturally ask follow-up questions, equipping chatbots with proper common sense on the
topic. For example, our chatbot mapped “Bulgogi, rice, and kimchi” to “a very traditional Korean
meal” in its response to the participant. Such response engages people through showing a level of
“understanding.”
Social Attributes. Given the importance of social features such as chit-chat for positive user
experience [62, 91], our results show that we can easily equip GPT-3 with such social aspects. For
example, our chatbots could respond naturally to the questions about their “personal life”—e.g.,

“Do you workout yourself?” “Yes, I work out regularly myself. I find that it helps me to stay
energized and focused throughout the day.” Further, our chatbots were also able to give suggestions
relevant to the topic. While mostly originated from common sense, some of the suggestions were
in-depth and tailored. In one time, one participant asked two questions in a row (probably due
to system or network error) were quite surprised to find that the chatbot provided a well-written
response (See Turn 04 in Fragment 6). This participant even commented that “I know a small bit
about NLP but not much when it comes to generating responses. I find it fascinating that (it) can give
such in-depth answers to specific topics as I find it hard to be able to train an AI to every kind of case
involving that.”
Error Recovery. Task-oriented chatbots usually have limited number of pre-defined user intents to
accomplish a specific goal. For instance, a banking chatbot can provide services such as currency-
exchange conversion and introduction of credit cards [57]. However, such chatbots are usually
unable to handle user messages that are out of the pre-defined intents (e.g., a user attempts to have
small talk with the banking chatbot) [57]. Also, they may even mis-recognize in-scope messages
due to the complexity of natural language [9]. Strategies like highlighting keywords and switching
topics [9] can help resolve conversation breakdowns at the price of making chatbots less human-like.
In our case, LLM-driven chatbots could handle the out-of-scope conversations relatively well, since
they could do improvisation actions relying on the ability of LLMs instead of defining intents
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intensively. In Fragment 4, a work chatbot with the job identity “life coach” handled the off-topic
request (“wake me up at 6 am”) by the participant smoothly and even provided tips on sleep. Even
when misunderstanding occurred, chatbots sometimes attempted to resolve it. In Fragment 3,
for example, the chatbot apologized for its misunderstanding and in5, GPT-3 resolved an empty
message error (due to system offline) by making up an excuse for its absence.

Fragment 4. Dialogue snippet of the bot continuing off-topic conversations from P34.
01 Can you wake me up at 6 am?

02
I’m sorry, but I cannot physically wake you up at 6 am. However, I can give you some
tips on how to wake up earlier and be productive in the morning.

03 Yeah, please.

04
Some possible tips to help you wake up earlier in the morning are to set your alarm clock for a
specific time and place it across the room ... [omitted]

Fragment 5. Dialogue snippet of an error recovery from P2.
01 That’s great! What time did you wake up this morning?
02 around 9 am.
03 (...no response...)
04 hello?

05
Sorry, I’m just checking to see if you’re still there. Yeah, so 9 am is a pretty good wake up time.
How would you rate your sleep quality from last night?

Context Tracking. Context is a key part in human conversations that connects multiple turns [16].
Previous studies have suggested that chatbots should aim to sustain contexts to improve the
dialogue efficiency [37]. Current conversational interfaces such as Google Assistant and Amazon
Alexa shows certain abilities in maintaining contexts [71]; however, most of them are still criticized
for not detecting contextual details [14, 20]. With Dialogflow, developers can define some contexts
to be maintained within 5 turns1; however, it has yet achieved truly flexible conversations through
this approach. In our case, the chatbots have shown impressive abilities in sustaining some contexts
without dedicated mechanisms for managing contexts. P27 noted, “I feel like it could keep track of
the context well between sentences during the conversation.” Through dialogue snippets presented in
Fragment 5 and 6, we can see that the context wasmaintained across 5 turns and 2 turns, respectively.
In particular, the context (intimidation) would be difficult to specify with most chatbot frameworks.
Further, one pattern that emerged in the dataset is that chatbots liked to give a summary of all the
user input in the end of conversations, which usually covered the past conversation history and
maintained contexts longer than 5 turns.

Fragment 6. Dialogue snippet of the chatbot tracking context from P33.
01 Those are good. How about intimidation at the gym?
02 Oh sorry, was that too vague?

03

No, that’s a great question. A lot of people feel intimidated when they first start going to the gym.
My best advice would be to just take things slow and focus on your own workout. Don’t worry
about what other people are doing or how they’re looking at you.
Just focus on yourselfand your own goals.

04 Thatś solid advice. You’re surprisingly eloquent for these responses!

1https://cloud.google.com/dialogflow/es/docs/contexts-input-output
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Low-effort Bootstrapping.We show several opportunities of LLMs in powering chatbots above.
Indeed, chatbots that provide many of the above functions, including chitchats, suggestions, and
context perseverance, can be trained with rich datasets. However, collecting such dataset is challeng-
ing, and training models on big datasets is costly and often inaccessible [12]. In terms of utilizing
mainstream chatbot platforms to build voice applications, it is of great human effort to come up
with user intents and example phrases as well as design conversation flows and logic [27, 68]. In
particular, the error handling is tricky to design as conversation breakdowns can be common and
even unexpected in the wild [20, 79, 108]. On the other hand, LLM’s in-context learning capability
enables us to skip collecting training dataset or configuring dialogue flows to create functional
chatbots. Further, our results show that simple alterations of prompts can significantly influence
the conversation styles of chatbots. With robust prompt designs, it is possible that people without
background in AI can directly personalize chatbots using natural language.

5.3 Drawbacks of LLM-driven Chatbots
Although LLMs showed great potential in steering chatbots, we also encountered several drawbacks
of LLM-driven chatbots. In the following, we discuss the two noteworthy drawbacks and their
potential causes. We also present strategies to overcome these drawbacks.
Randomness. LLMs generate text by predicting the most probable text following the input prompt.
While developers can tune hyper-parameters such as temperature and frequency penalty, the LLM
generations inherently exhibit a certain level of randomness [66], which is hard to explain or
anticipate. Such randomness might have led to erroneous responses of our chatbots. For exam-
ple, sometimes the chatbots “self-talked” [93] or exposed machine representations (symbols) as
responses. What makes it worse is that as the conversation history is accumulated, erroneous
responses stay in the prompt and lead to other erroneous ones. Also, the chatbots sometimes did
not consistently react to the same user input. When being told the participant skipped breakfast,
one chatbot under the condition DN responded, “That’s not ideal. Skipping breakfast can make
it harder to concentrate and can cause you to overeat later in the day,” while the other chatbot
under the same condition replied, “That’s okay! Some people choose to skip breakfast”. It is not
explainable whether such inconsistencies randomly happened or were caused by prior user inputs.
The stochastic nature of LLMs does not guarantee that they would comply with all natural lan-
guage instructions in prompts. As such, compared to rule-based chatbots that can almost 100%
ask pre-defined scripts [107], we can see that not all specified information slots were asked by our
chatbots during the study.
Repetitiveness. As LLMs tend to detect latent patterns in the prompts [17], the user messages
accumulated in the prompt (See B○ in Figure 1) may unintentionally trigger patternized behaviors,
making chatbots produce repetitive (although not always identical) turns. For example, many
of the messages generated by GPT-3 start with “It sounds like you...”, parroting user responses
and providing direct acknowledgment. Although such behaviors made many participants rate
the chatbots to be “understanding”, participants also criticized the awkwardness of parroting. We
suspect that such repetition was partially caused by a well-known problem of LLMs: they tend to
generate repetitive messages [111]. In worse cases, chatbots stuck in “dead loops” and could not
progress the conversation further. P20 even responded “please enough” to the chatbot’s repetitive
questions.
Despite drawbacks discussed above, LLMs-based chatbots can become a valuable and scalable

tool for researchers to collect data for personal informatics [35]. Reflecting on our findings, we
propose strategies to mitigate the erroneous behaviors of the chatbots. GPT-3 tends to generate
long responses, which may make chatbots to appear more robot-like. We suggest that researchers
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consider intentionally slowing down the responding delays. A longer gap may not only help create
a more human-like chatbot [31] but also create time for the system to run filters and algorithms to
pick better messages. Drawing on problems identified from our analysis, we envision a chatbot
system that generates three responses each turn (if the budget allows). Then, a repetition filter can
be used to filter out identically repetitive messages. In terms of linguistically repetitive messages,
the system can pick the message with the least linguistic similarity to the chatbot’s last turn.
The filter could also easily remove messages that have the self-talk errors or symbols. When the
conversation is too long, a parallel prompt can be made to detect if the conversation is in a dead loop
or a simple ending detection algorithm can deployed to end the conversation and improve the user
experience. All these filters are cost-efficient to implement and could resolve many problems. For
example, around 80% of errors occurred in SP are repetitive messages, self-talk, and system-offline,
all of which could potentially be resolved with simple filters. Lastly, we acknowledge that running
LLMs is always accompanied with uncertainty and the resultant chatbots may not be able to
fulfill defined tasks every time. Hence, we recommend researchers conducting intensive testing of
LLMs-powered chatbots to identify errors, understand the slot filling performance, and customize
filters accordingly.

5.4 Ethical consideration
LLMs are trained on an existing corpus that may contain biased and problematic information [30, 82].
Many have also suggested that cautions should be taken when using LLMs, particularly in the
field of healthcare delivery [48]. In our study, we intentionally used hints to guide participants to
compose their answers when conversing as we were unsure whether inappropriate content would
be generated. We did not see any biased, harmful or dangerous messages from GPT-3 in our dataset.
All the chatbots appeared to give conservative suggestions. For example, one participant tried to ask
diet suggestions for weight loss, but the chatbot with the job identity as a fitness coach suggested
that “it’s always best to speak with a doctor or registered dietitian before starting any weight loss
plan.” However, we also found some instances where chatbots failed to detect participants’ “teasing
and nonsensical” questions and gave advice that could potentially be dangerous to follow. For
example, to a participant who said “I want to gain 50 kg of pure fat by the end of the year. How
many snicker bars should I eat to complete that goal?”, the chatbot responded with a semantically
problematic message: “If you’re trying to eat 3000 calories a day and you’re only burning 2000,
then eating 3 snickers bars a day (each bar has around 1000 calories) could help you reach your goal.”
This message not only contains the incorrect fact (i.e., the calories of a snicker bar) but also is
irrational. This example suggests the importance of giving precautions to users that the chatbots’
messages do not guarantee medical or professional soundness [48].

5.5 Study Limitation
Due to the limited number of participants, we did not perfectly counterbalance the order of topics.
Fatigue effects may not be fully mitigated for Food and Sleep topics which always came after Work
and Exercise, respectively. Similarly, participants always conversed in the Positive conversation
path before the Negative one, although we believe that having consistent path orders would cause
less confusion and mistakes. Also, while we instructed participants to follow given conversation
paths, some participants might not perfectly comply with the guides, possibly affecting significance
of the pairwise comparisons. The targeted information slots consisted of only time, scale, binary,
and open-ended data types. Incorporating other types of questions such as multiple choices may
influence the chatbots’ performance. In addition, slots in each topic had different composition of
data types, so any differences among topics might be influenced by both the lexicon of the topic
and the composition of data types. Also, we did not control the conversation style of participants.
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Since user inputs also become part of the prompts, their linguistic patterns may affect GPT-3’s
generations and in turn the slot filling performance or the conversation style of chatbots itself.

We chose GPT-3 as the underlying LLM for our chatbots as it is mainstream and publicly accessible
via a commercial API at the time of study. Although the model we used shows overall state-of-the-
art performance in accuracy, robustness, and fairness (c.f., [60]), given that LLMs can be sensitive to
prompt designs [65], we reckon that our proposed prompts may not yield similar performance on
other LLMs due to the differences in the training corpora and the model architecture. For example,
newer LLMs that are improved to follow instructions in a prompt (e.g., text-davinci-003 [78]) or
optimized for dialogues (e.g., ChatCompletion models like gpt-3.5-turbo and gpt-4 [81]) may
be more diligent in filling slots. Therefore, future work may consider powering chatbots on other
LLMs, with our proposed prompts as a starting point.

5.6 Future Work
Future work can explore ways to improve the performance of LLM-driven chatbots. In our study, we
adopted zero-shot prompts. Researchers can try augmenting our prompts with few-shot learning
by providing example dialogues [17], which may make chatbots have more robust question-asking
abilities and can handle negative paths better [12]. Measuring chatbots requires great human efforts
so more future research into the effects of these parameters on prompts is needed to provide
guidance for the development of better and more robust chatbots. Researchers can also investigate
multi-stage prompting [109, 114] (i.e., designing several prompts for different questions in one
dialogue session) if they intend to collect more than 5 slots of information. Such approaches will
require incorporating dialog state tracking techniques (e.g., [63]) for automated slot filling. Lastly,
we hope future research can investigate the user perceptions of LLM-driven chatbots, or even
voice-based ones like smart speakers [106].

In this study, we focused exploring the chatbots’ performance and behaviors rather than the
user experience. Several participants were impressed by some of the chatbots’ responses but were
disappointed with repetitive messages at the same time. Hence, we are interested in seeing how
people will interact with an improved version of our chatbots and whether their mental models
of chatbots will change along with the advancement of chatbots [62]. In addition, comparing
user perception of LLM-driven chatbots with other mainstream chatbot frameworks (c.f., [77])
would provide holistic design implications for self-reporting chatbots with balanced data collection
performance and user perception.

6 CONCLUSION
In this study, we explored how we can use GPT-3 for powering chatbots that can reliably ask
people health-related questions through natural conversations. In an empirical user study, we
found that, simply through prompting, LLMs-based chatbots could effectively deliver questions
and collect desired self-reports. Particularly, we evaluated how two prompt design factors—format
and personality modifier–impacted the resulted chatbots’ ability in slot filling and conversation
styles. While LLMs can be a promising tool to build chatbots, we also discuss problematic messages
occurred in our dataset. Reflecting on our results, we provide insights into the prompt design for
chatbots and give suggestions on how to improve future LLMs-based chatbots. In closing, we hope
this work can inform and inspire other researchers in the fields of CSCW and Personal Informatics,
to see the potential of LLMs in powering enjoyable chatbots for robust data collection.
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A APPENDICES
A.1 The Web Chatbot Interface

A.2 Hint Texts for Conversation Paths
The hint texts are displayed in blue (positive) or red (negative) in the instruction (See Appendix
A.1, right).

Positive Path Negative Path

Sleep You had good sleep last night. You had bad sleep last night.

Work You were productive yesterday. You did nothing yesterday.

Food Intake You had all three meals yesterday. You skipped one meal yesterday.

Exercise You exercised yesterday. You did not exercise yesterday.

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. CSCW1, Article 87. Publication date: April 2024.



Powering Self-Report Chatbots with a Large Language Model 87:33

A.3 Least-Squared Mean Statistics for Slot Filling Rate
Estimation based on a significant linear model formula:
𝑆𝑙𝑜𝑡𝐹𝑖𝑙𝑙𝑖𝑛𝑔𝑅𝑎𝑡𝑒 = 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 + 𝐹𝑜𝑟𝑚𝑎𝑡 +𝑇𝑜𝑝𝑖𝑐 + 𝑃𝑎𝑡ℎ + 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 × 𝐹𝑜𝑟𝑚𝑎𝑡

𝐹 (7, 366) = 6.493, 𝑝 < .0001***

Table 8. Estimated least-squared means with 95% confidence intervals (CI) of slot filling rate by variables.

Variable Category Est. Mean SE df Lower CI Upper CI

Condition

SP 83.03% 2.60 366 77.91 88.16
SN 75.99% 2.54 366 71.00 80.98
DP 71.90% 2.55 366 66.89 76.91
DN 83.43% 2.59 366 78.33 88.52

Topic

Sleep 77.35% 2.56 366 72.31 82.39
Work 70.69% 2.61 366 65.57 75.81
Food 77.91% 2.55 366 72.89 82.92
Exercise 88.40% 2.56 366 83.36 93.44

Path
Positive 81.88% 1.82 366 78.31 85.45
Negative 75.30% 1.82 366 71.72 78.87

A.4 Least-Squared Mean Statistics for Required and SecondaryQuestion Turn Ratios
A.4.1 Turn Ratio of Required Questions. Estimation based on a mixed-effect model fitted:
𝑅𝑄𝑇𝑢𝑟𝑛𝑅𝑎𝑡𝑖𝑜 = 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 + 𝐹𝑜𝑟𝑚𝑎𝑡 +𝑇𝑜𝑝𝑖𝑐 + 𝑃𝑎𝑡ℎ + 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 × 𝐹𝑜𝑟𝑚𝑎𝑡 +𝑇𝑜𝑝𝑖𝑐 × 𝑃𝑎𝑡ℎ

with significant random effect of participants (𝑝 < .0001***)

Table 9. Estimated least-squared means with 95% confidence intervals (CI) of RQ turn ratio by variables.

Variable Category Est. Mean SE df Lower CI Upper CI

Format
Specific 22.44% 1.03 43.99 20.36 24.51
Descriptive 19.21% 1.03 43.97 17.14 21.29

Condition

SP 23.93% 1.47 44.94 20.98 26.88
SN 20.94% 1.45 43.05 18.02 23.86
DP 17.63% 1.45 43.41 14.70 20.56
DN 20.80% 1.46 44.54 17.85 23.74

Path
Positive 21.92% 0.86 82.65 20.22 23.63
Negative 19.73% 0.86 82.53 18.02 21.43

Topic × Path

Sleep
Positive 22.73% 1.38 295.42 20.01 25.45
Negative 23.78% 1.41 301.42 21.00 26.55

Work
Positive 19.13% 1.44 307.50 16.30 21.96
Negative 15.04% 1.40 298.34 12.29 17.78

Food
Positive 24.03% 1.38 295.42 21.31 26.75
Negative 23.54% 1.40 298.34 20.79 26.28

Exercise
Positive 21.81% 1.40 298.44 19.06 24.56
Negative 16.55% 1.40 298.44 13.81 19.30
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A.4.2 Turn Ratio of Secondary Questions. Estimation based on a significant linear model formula:
𝑆𝑄𝑇𝑢𝑟𝑛𝑅𝑎𝑡𝑖𝑜 = 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 + 𝐹𝑜𝑟𝑚𝑎𝑡 +𝑇𝑜𝑝𝑖𝑐 + 𝑃𝑎𝑡ℎ +𝑇𝑜𝑝𝑖𝑐 × 𝑃𝑎𝑡ℎ

𝐹 (9, 364) = 10.04, 𝑝 < .0001***

Table 10. Estimated least-squared means with 95% confidence intervals (CI) of SQ turn ratio by variables.

Variable Category Est. Mean SE df Lower CI Upper CI

Format
Specific 9.64% 0.68 364 8.30 10.97
Descriptive 12.55% 0.68 364 11.22 13.88

Condition

SP 9.26% 0.84 364 7.62 10.91
SN 10.01% 0.82 364 8.40 11.63
DP 12.18% 0.82 364 10.56 13.80
DN 12.93% 0.83 364 11.29 14.57

Path
Positive 9.59% 0.68 364 8.26 10.92
Negative 12.60% 0.68 364 11.27 13.93

Topic × Path

Sleep
Positive 7.71% 1.34 364 5.08 10.33
Negative 7.17% 1.36 364 4.49 9.85

Work
Positive 14.23% 1.39 364 11.49 16.98
Negative 20.03% 1.35 364 17.38 22.68

Food
Positive 9.66% 1.34 364 7.04 12.29
Negative 9.48% 1.35 364 6.83 12.13

Exercise
Positive 6.76% 1.35 364 4.11 9.42
Negative 13.70% 1.35 364 11.05 16.35

A.5 Least-Squared Mean Statistics for Chatbot Behavioral Turn Ratios
A.5.1 Chatbot’s Acknowledging Turn Ratio. Estimation based on a significant linear model formula:
𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑖𝑛𝑔𝑇𝑢𝑟𝑛𝑅𝑎𝑡𝑖𝑜 = 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 + 𝐹𝑜𝑟𝑚𝑎𝑡 +𝑇𝑜𝑝𝑖𝑐 + 𝑃𝑎𝑡ℎ + 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 × 𝐹𝑜𝑟𝑚𝑎𝑡

𝐹 (7, 366) = 6.715, 𝑝 < .0001***

Table 11. Estimated least-squared means with 95% confidence intervals (CI) of Acknowledging turn ratio by
variables.

Variable Category Est. Mean SE df Lower CI Upper CI

Format
Specific 17.44% 0.74 366 15.98 18.90
Descriptive 22.56% 0.74 366 21.10 24.02

Personality Modifier
With Modifier 20.85% 0.74 366 19.39 22.32
No Modifier 19.15% 0.74 366 17.69 20.61

Condition

SP 17.20% 1.06 366 15.11 19.30
SN 17.68% 1.04 366 15.64 19.72
DP 24.51% 1.04 366 22.46 26.55
DN 20.62% 1.06 366 18.54 22.70

Path
Positive 17.99% 0.74 366 16.52 19.45
Negative 22.02% 0.74 366 20.56 23.48
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A.5.2 Chatbot’s Appreciating Turn Ratio. Estimation based on a significant linear model formula:
𝐴𝑝𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑛𝑔𝑇𝑢𝑟𝑛𝑅𝑎𝑡𝑖𝑜 = 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 + 𝐹𝑜𝑟𝑚𝑎𝑡 +𝑇𝑜𝑝𝑖𝑐 + 𝑃𝑎𝑡ℎ +𝑇𝑜𝑝𝑖𝑐 × 𝐹𝑜𝑟𝑚𝑎𝑡

𝐹 (9, 364) = 8.903, 𝑝 < .0001***

Table 12. Estimated least-squared means with 95% confidence intervals (CI) of Appreciating turn ratio by
variables.

Variable Category Est. Mean SE df Lower CI Upper CI

Format
Specific 7.61% 0.59 364 6.44 8.78

Descriptive 9.64% 0.59 364 8.47 10.81

Personality Modifier
With Modifier 9.36% 0.60 364 8.19 10.53

No Modifier 7.89% 0.59 364 6.73 9.06

Condition

SP 8.34% 0.73 364 6.89 9.78

SN 6.87% 0.72 364 5.46 8.29

DP 10.38% 0.72 364 8.95 11.80

DN 8.91% 0.73 364 7.47 10.35

Path
Positive 11.33% 0.59 364 10.16 12.50

Negative 5.92% 0.59 364 4.75 7.09

A.5.3 Chatbot’s Sympathizing Turn Ratio. Estimation based on a significant linear model formula:
𝑆𝑦𝑚𝑝𝑎𝑡ℎ𝑖𝑧𝑖𝑛𝑔𝑇𝑢𝑟𝑛𝑅𝑎𝑡𝑖𝑜 = 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 + 𝐹𝑜𝑟𝑚𝑎𝑡 +𝑇𝑜𝑝𝑖𝑐 + 𝑃𝑎𝑡ℎ +𝑇𝑜𝑝𝑖𝑐 × 𝑃𝑎𝑡ℎ

𝐹 (9, 364) = 8.219, 𝑝 < .0001***

Table 13. Estimated least-squared means with 95% confidence intervals (CI) of Sympathizing turn ratio by
variables.

Variable Category Est. Mean SE df Lower CI Upper CI

Format
Specific 3.18% 0.39 364 2.41 3.96

Descriptive 3.03% 0.39 364 2.26 3.81

Personality Modifier
With Modifier 3.97% 0.40 364 3.19 4.75

No Modifier 2.25% 0.39 364 1.47 3.02

Condition

SP 4.04% 0.49 364 3.08 5.00

SN 2.32% 0.48 364 1.38 3.27

DP 3.89% 0.48 364 2.95 4.84

DN 2.17% 0.49 364 1.22 3.13

Path
Positive 1.16% 0.40 364 0.39 1.94

Negative 5.05% 0.39 364 4.28 5.83
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