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Figure 1: A two-shot learning example on our NLU framework, when the person has two prior items for exercise
tracker B . The system augments the prompt with synthetic seed samples C to transform the task into a 10-shot
learning problem F . Refer to Appendix A for an example prompt.

Abstract

Current natural language interaction for self-
tracking tools largely depends on bespoke im-
plementation optimized for a specific tracking
theme and data format, which is neither gen-
eralizable nor scalable to a tremendous design
space of self-tracking. However, training ma-
chine learning models in the context of self-
tracking is challenging due to the wide variety
of tracking topics and data formats. In this
paper, we propose a novel NLP task for self-
tracking that extracts close- and open-ended
information from a retrospective activity log de-
scribed as a plain text, and a domain-agnostic,
GPT-3-based NLU framework that performs
this task. The framework augments the prompt
using synthetic samples to transform the task
into 10-shot learning, to address a cold-start
problem in bootstrapping a new tracking topic.
Our preliminary evaluation suggests that our
approach significantly outperforms the baseline
QA models. Going further, we discuss future
application domains toward which the NLP and
HCI researchers can collaborate.

∗Minsuk is now at Google.

1 Introduction

Self-tracking tools (e.g., mHealth apps like Fit-
bit [Fitbit, Inc. 2021a]) help people longitudinally
track their health and activity in a structured and
systematic manner. The advancement of Natu-
ral Language Interaction (NLI) techniques have
opened new opportunities for designing novel self-
tracking systems with which people can intuitively
record their data using speech and/or chat; spec-
ifying long and complex information in natural
language is generally more flexible and expres-
sive than using predetermined forms in traditional
graphical widgets (Kim et al., 2021; Luo et al.,
2021, 2020). As a result, there is a growing interest
in building speech-mediated self-tracking tools to
offer low-burden (e.g., Luo et al. 2021) and acces-
sible (e.g., Kim et al. 2022) self-tracking.

Yet, existing systems predominantly incorporate
bespoke (and mostly rule-based) natural language
understanding (NLU) logics optimized for cap-
turing uniform information in a specific tracking
theme, compromising generalizability and scalabil-
ity to diverse user inputs and contexts. For example,
the NLU of Data@Hand, a visual exploration app
for fitness data, is implemented using syntax-based
rules with POS (part of speech) tags and predefined
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keywords (Kim et al., 2021). Such an approach is
known to be vulnerable to a selection of vocabulary
and individualized linguistic patterns (Kim et al.,
2019a, 2021). Furthermore, extending the NLU to
support a new type of data (e.g., exercise sessions)
is a demanding task because it requires appending
new rules manually.

Despite the promise of deep-learning-based NLP
approaches, it is still challenging to develop flexible
and scalable NLU models for self-tracking mainly
because the design space of self-tracking is broad
in terms of topics and data formats (Epstein et al.,
2020; Kim et al., 2017). Hence, it is overwhelming
to collect natural language datasets that cover the
entire space and varied domains.

In this work, we introduce a novel NLP task
for self-tracking focusing on in-situ data collection
scenarios where people capture their retrospective
activity logs. We also propose a novel NLU frame-
work (Figure 1) that supports this task, which incor-
porates GPT-3 (Brown et al., 2020), a large-scale
pre-trained language model (PLM), to handle lin-
guistic variations of natural language commands
(e.g., “I drank a cup of coffee an hour ago” or
“At 3:00 PM, had an Americano.”). To bootstrap
in-context learning on GPT-3, the framework lever-
ages synthetic samples constructed from simula-
tions with 24 seed tracking schemas. Given a natu-
ral language phrase, the framework extracts values
for data fields from a data table. The phrase may
be terse and specify only a subset of data fields.

Our preliminary evaluation shows that our
prompt augmentation approach using synthetic
seed samples was effective in extracting appropri-
ate information from the input phrases in a low-
resource scenario. In pure zero-shot cases, GPT-3
underperformed the T5-based model (Lin et al.,
2021; Raffel et al., 2020). However, it outper-
formed when augmented with synthetic seed sam-
ples that had different data schemas and tracking
topics. The performance increased by the num-
ber of prior examples in the corresponding data
schema but saturated with more examples. Our
findings demonstrate the opportunities of GPT-3’s
in-context learning abilities for avoiding a cold
start problem of the natural-language-based data
collection task.

2 Background

Self-tracking is a powerful means of understand-
ing oneself and self-promoting positive behavior

changes (Choe et al., 2014; Li et al., 2010). Peo-
ple capture their activities in a variety of topics
including but not limited to physical/mental health,
finance, productivity, diet, and sleep (Epstein et al.,
2020). The data points collected for self-tracking
usually describe a phenomenon during a time in-
terval or for an associated time point at a specific
granularity like minute or day (Kim et al., 2019b).
The phenomenon information consists of various
types of data fields such as numbers (e.g., step
count, heart rate), texts (e.g., description of a stress
episode), scales (e.g., productivity, stress level,
sleep quality) or choices (e.g., type of mood) (Jeon,
2016; Kim et al., 2017).

While fitness trackers can capture various health
metrics, many of the human activities cannot be
captured by sensors and still require a manual in-
put to be captured. As an effective way to reduce
the manual input burden, the speech modality has
recently gained interest and was applied to smart
speakers (e.g., Fitbit Skill [Fitbit, Inc. 2021b], My-
FitnessPal Skill [Under Armour, Inc 2021]) and
research prototypes (e.g., ModEat [M. Silva and
A. Epstein 2021], TandemTrack [Luo et al. 2020],
FoodScrap [Luo et al. 2021]). These tools support
speech-based data capture through smart speakers,
smartwatches, or smartphones. Our work expands
this growing body of speech-based self-tracking
research by proposing a unified framework of NLU
to support flexible phrasing of multifaceted infor-
mation in arbitrary tracking topics, which are not
yet supported by prior systems.

3 NLU Framework for Self-Tracking

3.1 Task Description

Imagine a person uses a self-tracking platform that
consists of multiple data tables for sub-topics. This
is analogous to common health platforms such as
Fitbit (Fitbit, Inc., 2021a) and Apple Health (Ap-
ple Inc., 2021) with multiple data tables for step
count, body weights, food, or water intake. We
refer to the individual data tables as trackers (e.g.,
B in Figure 1), and data points for each tracker
as items (e.g., colored bars in B in Figure 1).
A tracker comprises multiple input fields with six
data types—number, Likert scale, single-choice,
multiple-choice, short-form text, and long-form
text, which are derived from prominent data types
of existing self-tracking apps (Jeon, 2016; Kim
et al., 2017). The person may use natural language
to insert a new item to the database. For exam-
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ple, he or she may speak, “I did push-ups for
three repetitions at light intensity,” to describe
an item, {Exercise → push-ups , Repetitions → 3 ,
Intensity → light }, upon finishing the exercise ses-
sion. Such an interaction may be performed via a
smartphone app, chatbots, or voice assistants. This
main task of our framework can be represented as
itm′

trk = [v0trk...v
i
trk...v

n−1
trk ] = NLU(trk, phr),

where NLU derives a list of value v for n fields of
the tracker trk from the phrase phr. Assuming that
we have little or no instances for Itm′

trk, we solve
NLU() through few-shot learning with GPT-3. We
turned to PLM because it can be switched to a dif-
ferent problem upon a new natural language prompt
with a handful of examples (Liu et al., 2021b),
whereas traditional machine learning models re-
quire a large amount of task-specific datasets.

3.2 Prompt Augmentation
In the early stage of using trk, the person may not
have little or no items for it; the system does not
have sample instances with the same data schema
to be put in a prompt for few-shot learning, when
it receives a new phrase for trk. To overcome the
instability of accuracy in low-shot cases (Brown
et al., 2020), we transformed the NLP task into a
10-shot learning problem by augmenting the model
prompt (c.f., Appendix A) using synthetic samples.
We constructed a synthetic sample store ( C in Fig-
ure 1) with 504 item-phrase pairs from 24 trackers
(21 pairs per each tracker). The trackers were man-
ually composed by the authors (see Appendix B
for an exhaustive list of trackers). We randomly
generated item samples and phrases that describe
the content using GPT-3. Four authors iteratively
inspected the data and corrected wrong matches
between the values and the phrase. Each sample
contains a subset of data fields of the tracker, to
simulate the cases when people do not include all
field values in a single utterance. (See the second
item in B in Figure 1 that omitted Repetitions.)

The current implementation mixes both the near-
est five and the farthest five samples in a prompt
( D – F in Figure 1), inspired by Liu et al. 2021a
and Zhao et al. 2021. We used cosine similarity be-
tween the embeddings calculated using a sentence
transformer multi-qa-MiniLM-L6-cos-v1
in the sentence-transformers1 package.
When there exist items and phrases for the tracker,
they are treated as the nearest samples and placed

1https://pypi.org/project/sentence-transformers/

near the output of the prompt ( F in Fig-
ure 1). The framework passes the prompt to
GPT-3 via OpenAI’s API2. Specifically, we used
text-davinci-002, the most capable Instruct-
GPT (Ouyang et al., 2022) model optimized for
following human prompts. Finally, the postproces-
sor ( H in Figure 1) parses the plain text output into
a data table and matches the choice labels to the
nearest ones in a tracker schema using the same
transformer used in D .

4 Preliminary Evaluation

To obtain preliminary insights on the feasibility of
our approach, we evaluated the task outcomes from
a series of scenarios, using the synthetic samples
as a validation dataset.

Baselines We evaluated TransferQA and pure
zero-shot GPT-3 as two baseline models. Since the
proposed task has not been thoroughly explored in
the NLP discipline, we chose TransferQA, one of
the best-performing model for dialog state tracking,
whose task is the most similar to the proposed one.
TransferQA is a T5-based model pre-trained on var-
ious question answering (QA) datasets including
extractive and multiple-choice QA (Lin et al., 2021;
Raffel et al., 2020). Originally, it was proposed for
zero-shot dialogue state tracking and utilizes slot
description as a question to extract corresponding
value from a given input text. Although having
descriptions for each data field is not realistic in
our case, we manually added the description to
each field of the trackers to construct input prompts
of TransferQA. For example, “extractive question:
the number of repetitions or laps of the exercise?
context: user: i did push-ups for 3 repetitions at
light intensity.” is the input representation to get
Repetitions of exercise from the case in Figure 1.
For the choice and Likert scale fields, the options
were included the prompt as well. For GPT-3, we
prompted the model to extract field values from
an input phrase by giving only the tracker schema
without any examples.

In-context Learning We simulated the scenarios
where the user provides a phrase when there are
zero to four prior items in a database for the corre-
sponding tracker. Since we used synthetic samples
as a validation set, we treated one of the sample
trackers as a user tracker and excluded the samples
for the tracker from the store when augmenting the

2https://openai.com/api/
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Model N-shot JGA F1
aB-4 bR-L

Pure Zero-shot (Baseline)

TransferQA 0 27.8 53.7 13.6 28.7

GPT-3 0 26.2 49.9 41.2 58.5

In-context Learning (Augmented 10-shot Prompts)

0 42.5 68.3 56.3 77.1

1 51.2 73.1 57.0 78.9

GPT-3 2 57.7 75.6 58.8 80.5

3 56.9 76.6 57.3 78.3

4 56.5 76.4 57.8 78.8
a: BLEU-4, b: ROUGE-L

Table 1: Zero and few-shot evaluation results on our val-
idation dataset. The N-shot is the number of examples
of the corresponding tracker included in a prompt.

prompt. We iterated over all 24 trackers and 504
items, for each N-shot iteration (504 × 5 = 2520).

Evaluation Metrics We employed joint goal ac-
curacy (JGA) and F1 score, which are usually used
for the dialogue state tracking tasks to measure
the NLU performance of the models. JGA checks
whether all predicted values are exactly matched
with the ground truth values whereas F1 checks
partial matches between them. For these measures,
we excluded long-form text fields, for which we
instead measured BLEU-4 and ROUGE-L scores.

Results Table 1 illustrates the evaluation results.
In pure zero-shot cases, TransferQA slightly out-
performed for close-ended fields (JGA and F1)
but GPT-3 performed almost twice better in ex-
tracting open-ended, long-form text fields (B-4
and R-L). In in-context learning cases, GPT-3 aug-
mented with synthetic samples surprisingly outper-
formed both baseline models in both close-ended
and open-ended fields. Even when there were no
prior items for the corresponding tracker (zero-
shot in in-context learning), JGA was improved
by 16.3% and F1 by 18.4 in GPT-3. The prefor-
mance generally increased by the increase of the
number of prior items but seemed to be saturated
around two- or three-shots.

Limitation As a preliminary evaluation, we used
the synthetic samples as a validation set. For a more
ecologically valid evaluation, we need a human-
generated dataset in the future.

5 Discussion and Future Directions

In this section, we discuss the rooms for improve-
ment and envision collaborative application do-
mains for both HCI and NLP researchers.

5.1 Prompt Engineering and Seed Sampling

In this work, we mixed the nearest and farthest
samples in terms of linguistic similarity between
the phrases. A logical next step would be to in-
vestigate different strategies to generate prompts.
For example, we may hierarchically pick the appro-
priate trackers first and then retrieve samples from
them. Another approach is to split the data fields
into groups and run a PLM for each one separately.

5.2 Ethically Boosting Performance through
Synthetic Data Augmentation

Self-tracking data is inherently sensitive to privacy
issues because they contain personal health and
activity history. Therefore, training machine learn-
ing models with self-tracking data from multiple
people may raise ethical issues (Saltz et al., 2019)
and thus is impractical. In contrast, our framework
leverages only synthetic samples and the user’s own
data points to boost up model performance. Our
approach demonstrates a feasibility of leveraging
common sense of large language models instead of
training a baseline model using data collected from
a group of people. Future work remains to investi-
gate the external validity of the synthetic samples
when the framework serves real-world cases.

5.3 Warm-Starting Self-Tracking in
Cold-Start Settings

We note that the in-context learning zero-shot cases
in our experiment provide pure zero-shot experi-
ences from the users’ perspectives; with the frame-
work embedded in a self-tracking tool, the tool is
likely to yield the boosted performance even when
the user inserts a natural language query for the
first time. Going further, since the performance sig-
nificantly increases with only one or two contextual
samples (See Table 1), the user interfaces can be de-
signed to preemptively retrieve a few samples from
a new user. For example, the system may nudge
the user to provide several example utterances in
the initial calibration stage. Designing effective
warm-starting interaction warrants further research
especially from the HCI perspective.
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Figure 2: A scenario for a conversational agent embedding our framework (NLU) and a question generator. Upon
receiving a user utterance that specifies a subset of field values of the tracker (elements in pink on the right), the
question generator suggests a proper response of the system that asks back the user to specify the remaining fields.

5.4 Future Application Domains

Introducing a new NLP task for self-tracking, we
propose several application domains to which our
approach can be expanded further.

Designing User Interfaces Our topic-agnostic
framework can be integrated to a wide range of
self-tracking tools in various form factors that sup-
port natural language interaction. With speech, the
framework can be employed to implement vision-
and hands-free tools on smart speakers or smart-
watches. Since more than 40% of the trials in-
clude erroneous extractions (see JGA in Table 1),
proper error recovery methods (e.g., a roll-back but-
ton [Kim et al. 2021]) should be provided to users
for sustainable interaction.

Multi-Turn Conversation for Data Collection
Using a tracker with a long list of data fields, it
is not natural to describe all the required field val-
ues in a single utterance. Since our framework
assumes that the input phrase describes a subset of
data fields, we can expand the task as a multi-turn
conversation scenario (e.g., Bae et al. 2022) where
the system asks back to fill out missing information
in an item. Figure 2 illustrates a scenario of beer
logging through a conversational agent, embedding
our framework combined with a question generator.
This can be also viewed as schema-guided dialog
state tracking (Rastogi et al., 2020), but the extrac-
tion of multiple-choice and long-form text fields
poses challenges from the NLP perspective.

Schema-Free Data Collection We are also inves-
tigating a more radical scenario where people cap-
ture logs even without a predefined tracker schema
and the system automatically generates the proper
schema based on the natural language phrases. Sup-
porting such schema-free tracking would effec-
tively reduce the learning curve for newcomers
to self-tracking tools, especially when the trackers
are customizable (Kim et al., 2017).

6 Conclusion

In this work, we introduced a novel NLP task for
data collection in self-tracking and presented an
NLU framework that can effectively solve this task
by augmenting PLM’s prompt with synthetic sam-
ples. Drawing on the favorable outcomes from
the preliminary evaluation, we discussed future re-
search directions regarding improving the pipeline
as well as designing user interfaces to effectively
support self-tracking through our framework. As
an interdisciplinary team of both HCI and NLP
researchers, we hope this work inspires other re-
searchers working on the growing areas of self-
tracking and personal informatics, where we still
need more synergistic collaboration between the
NLP and HCI disciplines.
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A Exemplary Prompt for GPT-3

Extract field values from a given phrase by following a given format.

###
[Phrase] I read To Kill a Mockingbird, starting on page 31 and ending on page 88.
[Tracker name] Book log
[Tracker fields]
Book title -> text
Page start -> number
Page end -> number
Note -> text

[Extracted]
Book title -> To Kill a Mockingbird
Page start -> 31
Page end -> 88

###
[Phrase] My stress level was 52.
[Tracker name] Stress diary
[Tracker fields]
Stress level -> number
Reason of stress -> text
Conflict resolved -> Resolved/Not resolved
How did I resolve the conflict? -> text

[Extracted]
Stress level -> 52

###
[Phrase] I did 5 sets of very light push-ups.
[Tracker name] Exercise
[Tracker fields]
Exercise type -> Walking/Running/Cycling/Push-ups/Weight training/Stretching
Repetition -> number
Effort level -> Very light/Light/Moderate/Strenuous/Very strenuous
Description -> text

[Extracted]

Exercise type -> Push-ups
Repetition -> 5
Effort level -> Very light

Tracker schema

Phrase

Tracker schema

GPT-3 outcome

Input phrase

Item sample

Prom
pt text

More examples...

B Seed Trackers

We manually composed 24 seed trackers (i.e., data schema for tracking). We first extracted 10 tracking
themes from a survey of self-tracking research (Epstein et al., 2020) and an empirical study on user-defined
self-trackers (Kim et al., 2017). Of the four common types of trackers—timespamper, in-situ experience
logger, daily summary, and archive—identified by Kim et al. 2017, we composed trackers that fall within
either in-situ experience logger (A data entry denotes one unit of event or episode) or daily summary
(A data entry denotes a summarized reflection or information of a day). When designing schemas, we
referred to prior self-tracking research prototypes or commercial apps that we have public access to
the data format. Table 2 summarizes the format of all seed trackers. Note that all trackers include one
time-related field (e.g., Date, Time-point, Time-range), which we omitted in the table for brevity.
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Table 2: List of the seed trackers that were used for creating synthetic item samples. The Reference column denotes
the existing research or commercial apps that informed the design of the schema.

Type/Name Data Fields Reference

Exercise

In-situ Exercise
Exercise type
Choice-single

Repetition
Number

Intensity
Scale

Description
Text

Kim et al. 2022

Daily Daily exercise
Exercise done today
Choice-multiple

Overall satisfaction
Number

Reflections on today’s exercise
Text

Sleep

Daily Sleep diary
Sleep quality
Scale

Memo
Text

Medication

In-situ Pill intake
Medication
Choice-single

Number of pills
Number

Reason of taking
Text

Diabetes

In-situ Insulin shots
Type
Choice-single

Units
Number

MyNetDiary 2021

In-situ Blood sugar
Glucose level
Number

Measurement Timing
Choice-single

MyNetDiary 2021

Food

In-situ Meal log
Meal type
Choice-single

Menu
Text

Why I ate this food
Text

Healthy level
Scale

Luo et al. 2021

In-situ Visited restaurant
Restaurant name
Text

Type of cuisine
Choice-single

Menus I tried
Text

Rating for taste
Number

Rating for location
Number

Rating for hygiene
Number

Rating for staff
Number

Review
Text

Daily Daily eating
Types of meals had
Choice-multiple

Relfection on today’s eating
Text

Beverage

In-situ Beverage log
Category
Choice-single

Name
Text

Temperature
Choice-single

Cups
Number

Location
Choice-single

In-situ Beer log
Name
Text

Beer category
Choice-single

Score
Number

Review
Text

Kim et al. 2017

Daily Daily coffee
Number of cups had today
Number

Why I had that amount of coffee
Text

Luo et al. 2021

Mood

In-situ Mood episodes
Types of mood
Choice-multiple

Intensity of mood
Number

Reason of mood
Text

In-situ Stress diary
Stress level
Number

Reason of stress
Text

Conflict resolved
Choice-single

How did I resolve the conflict?
Text

Dietz et al. 2019

↓ Continued on the next page
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Table 2 – continued from the previous page

Type/Name Data Fields Reference

Daily Daily diary
Weather
Choice-single

Stress level
Number

Overall productivity
Scale

Atmosphere
Choice-single

Major types of mood
Choice-multiple

Whom I met today
Choice-multiple

Reflection on today
Text

Book

In-situ Book log
Book title
Text

Page start
Number

Page end
Number

Note
Text

Study

In-situ Study log
Study subject
Choice-single

Accomplishment
Number

Study content
Text

Daily Study diary
Study subjects
Choice-multiple

Overall satisfaction
Number

Reflection on today’s study
Text

Productivity

In-situ Tasks
Task
Choice-multiple

Productivity
Scale

Rationale for productivity
Text

Kim et al. 2019c

In-situ Breaks
What I did during the break
Choice-single

Reason for break
Text

Epstein et al. 2016

Daily Work diary
Major tasks
Choice-multiple

Overall productivity
Number

Reflections on today’s work
Text

Social

In-situ People
Who I met
Text

Purpose
Choice-single

What I did in detail
Text

Reflections on the interaction
Text

Smoking

In-situ Smoking log
Amount
Number

Tobacco name
Choice-single

Smoking context
Choice-single

Smoked with others
Choice-single

Female

Daily Daily period
Bleeding
Choice-single

Pain
Choice-multiple

Emotions
Choice-multiple

Sleep
Choice-single

Sex
Choice-multiple

Energy
Choice-single

Social
Choice-single

Reflection on today’s menstruation
Text

Biowink GmbH 2021
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